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ABSTRACT

A Better Memory Understanding for Program Dependence Graph through Static

Value-Flow Analysis

Author: Yian Su

Advisor: Simone Campanoni

Committee Members: Peter Dinda

Modern compiler engineers actively seeking ways to achieve performance and energy

efficiency by making aggressive code transformation on the source program based on

the information extracted and derived through both static and dynamic code analysis.

Program Dependence Graph (PDG), an representation which captures both the control

and data dependence of the source program, is a powerful representation to support

various code transformation techniques.

The construction of program dependence graph requires several code analyses. One of

the analysis, Pointer Analysis, is a technique to statically analyze the behavior of pointer

operations in the source program, whose result will then be used to determine the memory

data dependence of the program dependence graph.
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Given the complexity of pointer analysis, most pointer analysis applications provide

intraprocedural, flow-insensitive, context-insensitive and field-insensitive pointer analysis

results. These results are correct but with less precision, therefore introduces many false

positive memory data dependence in the program dependence graph, which prohibits

many powerful code transformation.

This thesis describes the integration of Static Value-Flow Analysis (SVF), a research

project that leverages the advance in sparse pointer analysis that provides both scalable

and more precise pointer analysis results, into a parallelizing framework – NOELLE and

demonstrates how false positive memory data dependence can be successfully removed.

Furthermore, to preserve the program dependence graph constructed, we implement

PDG Embedding and PDG Loading. This allows the program dependence graph con-

structed through a time-consuming analysis to be stored and attached to the LLVM

bitcode. Further construction of program dependence graph can now be read directly

from the bitcode.

We apply static value-flow analysis into NOELLE which requires program dependence

graph construction with interprocedural, flow-insensitive, context-insensitive and field-

sensitive pointer analysis, and evaluate and compare on the number of memory data

dependence exists before and after. The result shows by average, 25% of false memory

data dependence gets removed. We also measure the time elapsed to embed and load the

program dependence graph to and from the bitcode. The result shows that for a large

program with over 950K nodes and 18M edges, these two processes can be completed

within 1 and 2 minutes respectively.
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CHAPTER 1

Introduction

In this chapter, We first elaborate the goal for compiler engineers, we describe what a

compiler does and the concept of Code Transformation and Code Analysis and how code

analysis and transformation helps compiler engineers to achieve their goals. In the end,

the organization of the thesis is given.

1.1. Ultimate Goal for Compiler Engineers

Performance Efficiency and Energy Efficiency are the two ultimate goals for compiler

engineers. Given a program typically performs computation and generate the output.

The two goals can then defined as follows:

• Performance Efficiency : for the program compiled, the less use of time to com-

pute the output is expected.

• Energy Efficiency : for the program compiled, the less use of computation re-

sources, powers to compute the output is expected.

1.2. Code Transformation

In order to achieve both performance and energy efficiency, compiler engineers perform

various of aggressive code transformations and optimizations on the source program to

generate output faster and use less energy.
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Figure 1.1. Example of Constant Propagation

Figure 1.2. Example of Constant Propagation through memory

An example, Constant Propagation, in Figure 1.1, substitute the value of variable

with known constants compiler time, can be helpful since less registers are needed at the

run time of program. Therefore, we can achieve energy efficiency since less computation

resources are used.

1.3. Code Analysis

The decision to whether it is safe to make a code transformation or not, so that the

output of a program can be preserved, depends on how much we understand about the

program. The activity to collect information about the behavior of a program is called

Code Analysis.

An advanced code analysis result can provide valuable insight of the source program

to help making powerful code transformation. For instance, the constant propagation

problem can be complicated when pointers and memory locations are introduced. In

Figure 1.2, the decision to whether substitute ∗p with value 10 is determined by the result
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given by Pointer Analysis. An advanced pointer analysis can conclude that p points to

only one memory location and the value stored is 10. Therefore the constant propagation

can be performed.

However, the cost to perform an advance code analysis can be expensive in both time

and memory usage. As a trade-off inside code analysis between precision, latency and

memory consumption, a less precise pointer analysis may return that p can point to many

other memory locations, which prohibits the code transformation.

1.4. Thesis Organization

The thesis is organized as follows, in chapter 2, we introduce Program Dependence

Graph, an important representation of the source program to support various code trans-

formation. In chapter 3, we show Pointer Analysis, an analysis used by program depen-

dence graph and show how the false positive dependence gets introduced. In chapter 4, we

introduce Static Value-Flow Analysis and dive deep into its workflow and show how the

false positive dependence in the program dependence graph can be removed. In chapter 5,

the integration of static value-flow analysis with a parallelizing framework – NOELLE is

introduced. In chapter 6, we describe the concept and implementation of PDG Embedding

and PDG Loading to LLVM bitcode. We evaluate the false positive memory dependence

removed after leveraging static value-flow analysis and the time elapsed to perform PDG

Embedding and PDG Loading on test suite SPEC2017 in chapter 7. Finally, the conclu-

sion and future works are given in chapter 6.
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CHAPTER 2

Program Dependence Graph

This chapter introduces Program Dependence Graph, an intermediate graph repre-

sentation of the original program. Firstly, data dependence and control dependence are

explained respectively. Secondly, the usage of program dependence graph is described.

We further discuss the correctness and precision of program dependence graph. Finally,

the problem with existing program dependence graph is raised.

2.1. What is it?

Program dependence graph (PDG), which first introduced by Ferrante, Ottenstein and

Warren [1], is an intermediate graph representation of the source program that makes both

the control and data dependence explicit for each operation. The nodes are instructions

or or function arguments and the edges incident into a node represent either the control

condition on which the execution of the operations depends or the data value on which the

node’s operation depend. Therefore, PDG represents two types of dependence, namely,

control dependence and data dependence.

2.1.1. Control Dependence

Control dependency is a situation in which a program instruction executes if the previous

instruction evaluates in a way that allows its execution. As in Figure 2.1, the execution

of a = 20 depend on the evaluation of condition. We then assert that a = 20 is control
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Figure 2.1. Control Dependence

Figure 2.2. Variable Data Dependence

dependent on if(condition). However, no matter what condition is evaluated to, b = 10

always gets executed, so there’s no control dependence between if(condition) and b = 10.

2.1.2. Data Dependence

Data dependency is a situation in which a program instruction refers to the data of a

preceding instruction. There are two types of data dependence. Variable Data Dependence

and Memory Data Dependence. Variable data dependence refers to data dependent on

each other through variable. Memory data dependence, which refers to the data in a

memory cell will be accessed in the following program.

In Figure 2.2, b = a + 1 variable data dependent on the variable of a whose value is

10.
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Figure 2.3. Memory Data Dependence

There are three data dependence in Figure 2.3, two variable data dependence and one

memory data dependence. c = ∗p + 2 memory data dependent on ∗p = 10 since the

content in the memory location pointed by p gets updated.

Data dependence provides an explicit representation of the definition-and-use relation-

ships implicitly present in the source program.

2.2. Usage of Program Dependence Graph

PDG unifies both control and data dependence, so it can be used by code transforma-

tion techniques that requires control dependence info or data dependence info or both.

Program Parallelization, which splits the source program to be running on multiple

cores instead of a single core, gains more and more attention these days. Paralleliza-

tion requires both control and data dependence information and parallelizes the source

program in a way that all the dependence are preserved. PDG helps the parallelization

process to be performed in a way that respect the dependence of the source program, thus

achieving the goal of performance efficiency.
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Figure 2.4. Example of Program Parallelization

As shown in Figure 2.4, since there’s no dependence between a = 10 and b = 20, these

two instructions can then be parallelized. If constant number of cycles is assumed to run

every instruction, we can then achieve a 50% increase in performance after parallelization.

2.3. Correctness v.s. Precision

The Correctness and Precision of PDG needs to be differentiated. We consider a

PDG constructed to be correct if it has all the actual dependence. The precision of PDG

means given all the dependence identified within a PDG, what is the proportion of the

true dependence. The true dependence should at least be a subset of the dependence

identified. Otherwise, the PDG constructed wouldn’t be considered as correct.

It would be easier to conservatively assume all the dependence exists. As shown in

Figure 2.5, in which the true dependence is represented by solid line while the false positive

dependence is represented by dotted line. Given this PDG constructed, we consider it to

be correct but only has a precision of 60%.

2.4. Problem

The PDG generated introduces many false positive dependence due to the trade-off

of between precision, latency and memory consumption within the code analysis process.



18

Figure 2.5. Correctness v.s. Precision

Though the PDG constructed is correct, the less of precision prohibits further code trans-

formation which originally is able to be applied. In the example of Figure 2.5. The false

positive memory data dependence introduced between c = ∗q + 1 and ∗p = 10 prevents

the originally applicable constant propagation of ∗q, who can be substituted with constant

20.

Identifying control and variable data dependence is relatively simple, as efficient and

scalable algorithm to find control dependence is available and variable data dependence

is explicit in the program. However, identifying memory data dependence is complicated

since memory data is generally hidden and hard to track. Therefore, there’s a large

portion of false positive memory data dependence exists in the constructed PDG. The code

analysis technique to identify memory data dependence called Pointer Analysis. In the

next chapter, we discuss more about pointer analysis and understand why its complexity.

Then, in the chapter after next chapter, we show how by leveraging the Static Value-Flow
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Analysis, these false positive memory data dependence can be efficiently and successfully

removed.
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CHAPTER 3

Pointer Analysis

This chapter describes Pointer Analysis, also known as alias analysis, points-to anal-

ysis, is an static code analysis technique that reasons the behavior of pointers at compile

time. We first give an example to answer the question what pointer analysis is trying

to solve. Then several variants of pointer analysis is introduced. LLVM pointer analysis

is explained in the last and we show how the false positive memory data dependence is

introduced due to LLVM’s less precise pointer analysis.

3.1. An Example

Listing 3.1. An Example Program

1 #include <s t d i o . h>

2 #include <s t d l i b . h>

3

4 int f oo ( int ∗p1 , int ∗p2 , int value ) {

5 ∗p1 = value ;

6 return ∗p2 ;

7 }

8

9 int bar ( int value1 , int value2 ) {
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10 return value1 + value2 ;

11 }

12

13 int main ( ) {

14 int ∗p = ( int ∗) mal loc ( s izeof ( int ) ) ; // i n t e g e r o b j e c t 1

15 int ∗q = ( int ∗) mal loc ( s izeof ( int ) ) ; // i n t e g e r o b j e c t 2

16

17 int value1 = foo (p , q , 1 0 ) ;

18 int value2 = bar (1 , 2 ) ;

19 int value3 = foo (q , p , 2 0 ) ;

20

21 return 0 ;

22 }

A pointer analysis statically reasons the behavior of pointers at compile so as to help

making code transformation of source program involves pointer operations. It answers at

least the following questions:

• In a given point of the program, can two pointers point to the same memory

location (alias with each other)?

• What memory locations does a pointer points to at a given point of the program?

At the end of pointer analysis, a points-to set will be given, which maps a pointer to

the memory locations (objects) it points to. For instance, in this example, the points to
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set for pointer p in function main is {obj1} due to the malloc at the beginning of the

function. Pointer p has obj2 in its points-to set likewise.

For this program, we more interested at function foo, does p1 and p2 alias with each

other? And there are generally three answers to this question:

• NoAlias. Pointer p1 and p2 cannot alias with each other.

• MustAlias. Pointer p1 and p2 must point to the same memory location (object).

A constant propagation to substitute ∗p2 with value can be applied.

• MayAlias. Pointer p1 and p2 may or may not alias with each other because we

don’t know.

Since a MayAlias introduces uncertainty, we have to conservatively assume there exists

a memory data dependence between ∗p1 = value and ∗p2. This is how the false positive

memory data dependence is introduced. Though after inspecting this simple example. We

can know for sure that there should be no memory data dependence between ∗p1 = value

and ∗p2 since p1 and p2 can never alias with each other.

3.2. Variants of Pointer Analysis

Pointer analysis has to be correct. This can simply be achieved by assuming all pointers

may alias with each other and pointer points to all the memory locations. However, this

makes a pointer analysis to be less useful since the precision will be very low. The approach

to have a highly precise pointer analysis is hard and complex, all points-to information

will be propagated along with the control-flow graph and are likely to be updated as

pointer operations get involved, as described by Hind [2]. Since it’s relative unable to
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scale to get a highly precise pointer analysis. Typically, pointer analysis is designed based

on various needs and has a lot of variants.

3.2.1. Intraprocedural v.s. Interprocedural

An intraprocedural pointer analysis performs on a function level whereas an interproce-

dural pointer analysis is performed on the whole program (module) level.

An intraprocedural pointer analysis will return MayAlias between p1 and p2 as they

are function parameters, pointer analysis has to conservatively assume they can point to

any memory location when this invoked. On the other hand, a interprocedural pointer

analysis will propagate points-to information from the callsite. Pointer analysis can then

decide with they alias comparing their points-to sets.

Though interprocedural pointer analysis provides a higher degree of precision, it is

expensive in time and memory usage. An interprocedural pointer analysis requires the

computation of call graph and a lot of points-to information will get propagate along the

call graph edges.

3.2.2. Flow-insensitive v.s. Flow-sensitive

A flow-insensitive pointer analysis generates one copy of points-to set for the whole pro-

gram since the execution order of instructions don’t matter. Flow-sensitive pointer anal-

ysis generates the points-to set for every point of the program as the execution order of

instructions are taken into account.

In Figure 3.1, a flow-sensitive pointer analysis will returns that after the execution

of instruction j, the points-to set for p is {a}, for q is {b}. However, since the order of
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Figure 3.1. Flow-Insensitive and Flow-Sensitive

execution doesn’t matter and only one copy of points-to set is generated for flow-insensitive

pointer analysis. The points-to set at any point for p is {a, c}, for q is {b}.

Flow-sensitive pointer analysis has notoriously been hard to scale. Though flow-

sensitive pointer analysis provides a higher degree of precision, imagine a program with

thousands of pointers and thousands of memory locations, every instruction in the pro-

gram have to maintain at least two copies of thousands of points-to information, before

and after the instruction is executed. Given these shortcomings, a lot of pointer analysis

is performed in a flow-insensitive manner.

3.2.3. Context-insensitive v.s. Context-sensitive

Given an interprocedural pointer analysis with context-insensitivity, several invocation of

the same function get merged and all the points-to information will be unified and prop-

agate along the call graph edge. A context-sensitive pointer analysis stores the context of

points-to information at a callsite and treat calls to the same function respectively.

As in the example of function foo, a context-insensitive pointer analysis will determine

that pointers p1 and p2 can all points to both obj1 and obj2, while a context-sensitive

pointer analysis treats every callsite respectively and decide the first invocation of function

foo has p1 points to obj1 and p2 points to obj2. The second invocation has p1 points to

obj2 and p2 points to obj1.
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Implementing a context-sensitive pointer analysis can be hard since the context in-

formation has to be preserved, which becomes challenging when call graph is huge and

recursion occurs.

3.2.4. Field-insensitive v.s. Field-sensitive

Field insensitive and field-sensitive pointer analysis treats the field of a compounded struct

or class object differently. A field-insensitive pointer analysis treats all the fields in a struct

or class object as a whole, thus pointers point to different field of the struct or class object

will be considered as alias. On the other hand, a field-sensitive pointer analysis returns

no alias if two pointers point to different field of a struct or class object.

3.2.5. LLVM Pointer Analysis

Our current construction of program dependence graph uses LLVM Pointer Analysis

Infrastructure to determine memory data dependence. Most of LLVM’s pointer analysis is

intraprocedural, flow-insensitive, context-insensitive and field-insensitive. This generates

a lot of false positive memory data dependence. As in the first example of this chapter.

LLVM pointer analysis return MayAlias result between pointer p1 and p2 in function foo,

which the true dependence should be NoAlias.

In the next chapter, we present Static Value-Flow Analysis, a research tool leverage

sparse pointer analysis to make scalable interprocedural flow-senstive, context-sensitive

and field-senstive pointer analysis.
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CHAPTER 4

Static Value-Flow Analysis

Static Value-Flow Analysis (SVF) is a research tool leverage the recent advance in

sparse pointer analysis and supports refinement-based interprocedural program depend-

nece analysis, which is designed ant implemented by a research group at University of

Technology Sydney lead by Sui [1]. In this chapter, We first give an overview of the work-

flow of SVF. Then we dive deep into its two major modules, Andersen’s Pointer Analysis

and Value-Flow Construction. Finally, we demonstrate how the false positive memory

data dependence can be successfully removed after applying SVF with a context-sensitive

pointer analysis in a scalable way.

4.1. Static Value-Flow Analysis Workflow

SVF work flow is scheduled as follows. The source program is first compiled and

transformed into LLVM intermediate representation (bitcode), in Figure 4.2. An inter-

procedural, flow-insensitive and context-insensitive pointer analysis is performed on the

bitcode to generate a less precise points-to result. This points-to result is used by the

next module, value-flow construction. The value-flow construction makes both the reg-

ister variables and memory objects explicit in the LLVM intermediate representation. A

value-flow graph can be generated. Further flow-sensitive and context-sensitive pointer

analysis can then be performed on this value-flow graph in a scalable way thanks to a

more precise points-to result.
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Figure 4.1. Workflow of Static Value-Flow

Figure 4.2. LLVM Intermediate Representation (Bitcode)

4.2. Andersen’s Pointer Analysis

Andersen’s Pointer Analysis is a well-known flow-insensitive pointer analysis that can

easily be extended to support interprocedrual and field-sensitive. Andersens’s pointer
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Figure 4.3. An example of Andersen’s Pointer Analysis and Points-to Set

analysis transforms all the pointer operations in the source program into a set of con-

straints use the rules as follows:

• p = &x =⇒ lx ∈ pts(p)

• p = q =⇒ pts(p) ⊇ pts(q)

• ∗p = q =⇒ ∀o ∈ pts(p), pts(o) ⊇ pts(q)

• p = ∗q =⇒ ∀o ∈ pts(q), pts(p) ⊇ pts(o)

A constraints solver will then be invoked to solve all of these constraints and generates

the global points-to set. The solver converges when all the constraints are met.

4.3. Value-Flow Construction

With the flow-insensitive global points-to set available, the value-flow construction

module will be invoked. Value-flow construction model consists of three steps, Mod-Ref

Analysis, Memory SSA Construction and Value-Flow Graph Construction. These three

steps will be further explained in the following sections.
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4.3.1. Mod-Ref Analysis

Mod-Ref Analysis captures both the modification and reference side-effect for memory

locations of a function. We say a function has a modification side-effect on a memory

location if this memory location is modified either rewritten by a store instruction or

escape to be written through a function call inside this function. Reference, on the other

hand, refers that a memory location is accessed either read by a load instruction of escape

to be read through a function call.

As in function foo and bar in the example in Chapter 2, we conclude that foo has

modification side effect on the memory locations pointed by p1 and reference side effect

on the memory locations pointed by p2. Function bar doesn’t have any side effect as no

memory store or write operations get involved.

4.3.2. Memory SSA

Given the global points-to set and the mod-ref analysis result. A memory SSA can then

be constructed, as shown in Figure 4.4. The idea to construct such a memory SSA is by

making all the data dependence including both variable and memory dependence explicit

in the LLVM IR. The memory SSA can be constructed through annotation on the LLVM

IR with respect to the following rules.

• Load: p = ∗q is annotated with LOADMU(o) for any object pointed by q to

represent a use of object o.

• Store: ∗p = q is annotated with o2 = STORECHI(o1) for any object pointed

by p to represent both a definition and use of object o.
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Figure 4.4. Memory SSA after Annotations

• CallSite: callsites are annotated with CALLMU and CALLCHI based on the

mod-ref results of the callee function.

• Function entry/exit: ENTRY CHI and RETMU are annotated at the begin-

ning/exit of function to represent the definition/future use of memory objects.
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4.3.3. Value-Flow Graph

With memory SSA in hand, a value-flow graph can be constructed by connecting both

the def-use of register variable and memory objects. Since the register variables’ def-use

relationship is already explicit in the LLVM bitcode SSA form, simply connecting all the

def and use of memory objects within memory SSA can get a value-flow graph consisting

of both register variables and memory objects.

4.4. Leverage Static Value-Flow Analysis

With the value-flow graph available, any flow-sensitive or context-sensitive pointer

analysis now can then be performed using traditional iterative algorithm on this graph

sparsely in a scalable manner.

For example, from memory SSA in Figure 4.4, we notice that the invocation to function

foo will have no side-effect on any memory locations. Therefore the points-to set before

and after the execution of this callsite remains the same. In fact, when performing a flow-

sensitive pointer analysis, the points-to information only needs to be propagated along

the value-flow edge of memory objects as its where the pointer operations takes place and

update to the points-to set happens.

Now, when we query the alias result between pointer p1 and p2 in function foo using

any context-sensitive pointer analysis. We will get the NoAlias result. In other words,

the false positive memory data dependence introduced before due to MayAlias result can

now be successfully removed.
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CHAPTER 5

Leverage Static Value-Flow Analysis

In this chapter, we describe how to leverage the result of SVF into a parallelizing

framework – NOELLE. We introduce the workflow of NOELLE and the integration pro-

cess with SVF.

5.1. NOELLE

NOELLE is a parallelizing compilation framework aiming at irregular workloads de-

signed at implemented by Simone Campanoni and Angelo Matni at Northwestern Uni-

versity. NOELLE focuses on parallelizing loops in the source program as loops spend

the most proportion of time during a program’s execution. Several loop parallelizing

techniques are used within NOELLE, including DOALL, DSWP [3] and HELIX [4], etc.

NOELLE also has regression, unit, and performance test to measure the correctness and

performance improved for the source program after being parallelized.

5.1.1. Workflow of NOELLE

The workflow of NOELLE is shown in Figure 5.1. A source program is first compiled

into LLVM bitcode by clang. Next, transformation such as function inlining and loop

hoisting, loop distribution and loop unrolling are performed on the bitcode to explore more

parallelizing opportunities. Program profiling will then be used to collect information

during the execution of the program to determine the hot loops. After that, the process
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Figure 5.1. Workflow of Noelle

to construct program dependence graph gets invoked to identify both the control and

data dependence within the program. Finally, several parallelizing techniques will be

applied on the source program based on the program dependence graph to generate the

parallelized binary targeting hot loops.

5.2. Integration with Static Value-Flow Analysis

The integration of SVF with NOELLE has three steps. Building SVF as a shared

library, initializing SVF client for querying pointer analysis and the actual alias querying.
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5.2.1. Build SVF

We use SVF-1.8 based on LLVM 9.0.0 is for the integration process. By default, SVF is

built as a static library, which limits the integration with NOELLE since adds-on libraries

are normally shared libraries. This limit has been removed by modifying SVF’s default

build script and CMakeLists. A compiler flag -fPIC should also be specified to generate

a place independent code of SVF.

5.2.2. Initialize WPAPass

SVF provides an pass called WPAPass to perform a whole program analysis. The pro-

gram dependence graph gets constructed resides in PDGAnalysis pass of NOELLE, the

WPAPass then is declared as a dependent of PDGAnalysis.

SVF has been designed to perform interprocedural and field-sensitive pointer analysis.

Therefore, in order to reduce the overall complexity, SVF modifies the bitcode in the

following ways. For interprocedural analysis, SVF unifies all the exit nodes and ensures

every function can only have one exit to simplify the propagation of points-to set. For field-

sensitivity, SVF breaks GEP constant expressions into GEP instructions inside LLVM

bitcode, making the operations to field objects explicit.

To ensure the bitcode is not modified within the workflow of NOELLE, a normalization

process is performed at the beginning of NOELLE. Therefore, two extra transformation

passes, -mergereturns and -break-constgeps are added to ensure the LLVM bitcode is not

modified through SVF.
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5.2.3. Invoke alias()

Once the WPAPass finishes, we are able to query alias info between pointers through

SVF. WPAPass provides alias() APIs for clients to query this information.

Multiple pointer analysis can be asked to perform on the bitcode inside SVF. NOELLE

initially uses LLVM’s pointer analysis, they are -globals-aa, -cfl-steens-aa, -tbaa, -scev-aa

and -cfl-anders-aa. The alias result is determined by the least conservative one. That is,

if one pointer analysis returns a Must result, it will then be accepted. SVF provides eight

extra pointer analysis: -nander, -hander, -sander, -sfrander, -wander, -ander, -lander

and -hlander. They are all interprocedural, flow-insenstive, context-insensitive, field-

sensitive Andersen’s pointer analysis solving by different solvers. The less conservative

result between LLVM’s pointer analysis and SVF’s pointer analysis will be adopted.
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CHAPTER 6

Combine Program Dependence Graph with Bitcode

In this chapter, we show how to couple the constructed PDG into bitcode to make

pdg expicit. Firstly, PDG Embedding and PDG Loading is presented, we describe the

reason why PDG Embedding and PDG Loading can save us tremendous time. A PDG

can further be dumped into an JSON object, which supports PDG comparison and other

uses. The scheme of this PDG JSON object is also given in the chapter.

6.1. Program Dependence Graph Embedding and Loading

Besides providing an intermediate representation of the source program, LLVM bitcode

also let users to store various information. This is realized through adding Metadata to

the bitcode. Metadata can be attached to the bitcode in both module, function and

instruction levels. The benefits of embedding PDG in the bitcode is that it not only

allows a single construction of PDG through analysis, but also gives you a bitcode with

PDG that can be restored at any time. As analysis to determine dependence can be

expensive, for a system that requires to construct PDG multiple times without modifying

the bitcode, embedding PDG in the bitcode can save a tremendous of time and memory

usage.
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Figure 6.1. LLVM Bitcode before PDG Embedding

6.1.1. PDG Embedding

The embedding of PDG first needs a PDG constructed through analysis. At the begin-

ning, all the nodes are added to the PDG. These nodes are either function arguments or

instructions. All the nodes are assigned a globally unique ID. Edges in PDG represent

dependence, and they are added between nodes through analysis for control dependence,

variable data dependence and memory data dependence.

The PDG nodes are first embedded to the bitcode, an instruction node is embedded to

the corresponding instruction with its ID. Since LLVM doesn’t support adding metadata

for function arguments, argument nodes are therefore embedded to the function with IDs

for all its arguments.

The PDG edges are next to be embedded to the bitcode on the function level. We

store the following information for every edge. The source node and destination node,

which are represented by IDs, the dependence information indicates whether this is a

control, variable data or memory data. And the information to determine whether the

dependence is loop-carried and whether it can be removed or not.

With all the PDG nodes and edges embedded to the bitcode, a named metadata is

embedded to the module indicating whether this bitcode has PDG embedded. As shown

in Figure 6.2.
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Figure 6.2. LLVM Bitcode after PDG Embedding

6.1.2. PDG Loading

The loading of PDG is a reverse process to construct the PDG from the metadata without

querying any analysis. If the named metadata indicating the PDG has been embedded

can be found, we then construct PDG from metadata instead of from analysis.
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The PDG nodes are first constructed by going through all the function arguments and

instructions in the bitcode. An ID to node map will also be constructed using the ID

number in the metadata.

Then, by going through every edge set embed to every function, we reconstruct PDG

edges by going through every edge metadata inside the edge set of that function. The edge

attribute can be restored through reading the metadata and the source and destination

node can be identified by querying the ID to node map.

6.2. Dump Program Dependence Graph to JSON

Besides embedding and loading PDG into the bitcode, we also provide mechanism to

dump the PDG to an JSON object. So the difference between two PDGs can easily be

detected by comparing two JSON objects. Moreover, an JSON object can store extra and

more structured information and therefore can be leveraged by many other applications.

6.2.1. Schema

The JSON object has two keywords, nodes and edges. nodes maps to a nested JSON

object whose keywords are the function names. Each function name maps to an array

object storing the nodes data of that function. edges, likewise, maps to a nested JSON

object whose keywords are also the function names, which then map to an array object

storing the edges data. An example is given in Figure 6.3.
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Figure 6.3. PDG JSON Object
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CHAPTER 7

Evaluation

In this chapter, we do the evaluation on test suite SPEC2017. We first measure the

false positive memory data dependence removed after integrating SVF and then measure

the time elapsed for PDG Embedding and PDG Loading.

7.1. Measure memory data dependence

SPEC2017 is a CPU intensive suite to provide a comparative measure of compute-

intensive performance across the widest practical range of hardware using workloads de-

veloped from real user applications.

We integrated SVF into NOELLE with interprocedural, flow-insensitive, context-

insensitive and context-sensitive pointer analysis to generate the intermediate PDG and

compare the memory dependence generated before as baseline and after SVF gets inte-

grated as shown in Table 7.1. Several benchmarks are not included in the table because

SVF run for too long and didn’t finish within 2 hours. These benchmarks are imagick,

omnetpp, parest and perlbench.

As shown in the table, an average of 25% false positive memory data dependence get

successfully removed.
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BENCHMARK baseline svf integrated % of memory dependence removed

deepsjeng 300,088 213,082 29.0%
lbm 17,164 12,764 25.6%
leela 1,909,848 1,730,526 9.4%
mcf 640,182 610,598 4.6%
nab 6,345,124 5,929,618 6.5%

namd 15,709,764 4,845,886 69.2%
x264 14,565,990 12,961,420 11.0%

xalancbmk 26,234,504 16,169,354 38.4%
xz 1,072,660 681,268 36.5%

AVERAGE 25.1%
Table 7.1. Statistics of memory data dependence between baseline and in-
tegration of SVF

7.2. Measure PDG Embedding and PDG Loading

We then measure the time elapsed for PDG Embedding and PDG Loading for bench-

marks within SPEC2017 after integration with SVF. The number of nodes, edges and the

time to perform embedding and loading in milliseconds are presented in the Table 7.2.

BENCHMARK # of nodes # of edges PDG embedding PDG loading

deepsjeng 20,030 258,703 480 ms 1,555 ms
lbm 2,858 20,067 31 ms 108 ms
leela 37,446 1,825,209 3,369 ms 12,422 ms
mcf 8,272 632,530 1,091 ms 4,236 ms
nab 45,250 6,038,519 15,195 ms 44,203 ms

namd 202,683 5,426,533 10,755 ms 35,058 ms
x264 149,345 13,317,229 26,956 ms 93,342 ms

xalancbmk 952,067 18,411,447 40,150 ms 117,817 ms
xz 37,080 774,979 1,425 ms 4,925 ms

Table 7.2. Statistics of elapsed time in milliseconds for PDG Embedding
and PDG Loading
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As we can see, for the largest benchmark, xalancbmk, who has over 950K nodes and

18M dependence edges. A construction of PDG through analysis for such a large bench-

mark can last for hours. However, by performing PDG Embedding and PDG Loading,

this time-consuming process and its generated output can be preserved and restored in

less than 1 and 2 minutes respectively.
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CHAPTER 8

Conclusion

In this thesis, we present Static Value-Flow Analysis, a code analysis technique lever-

ages the recent advance in sparse pointer analysis so that the flow-sensitive or context-

sensitive pointer analysis that previously cannot be easily scaled now can be performed in

a scalable manner. The result shows that by leveraging SVF with interprocedural, flow-

insensitive, context-insensitive and field-sensitive pointer analysis, an average of 25% false

positive memory data dependence can be dropped. We also introduce the implementation

of PDG Embedding and PDG Loading, the idea to embed and restore the PDG informa-

tion to and from LLVM bitcode through metadata. By performing PDG Embedding and

PDG Loading, the construction of PDG through analysis needs to be performed only once

and the following process who requires PDG construction can benefit from it. As shown

in the evaluation result. Even for a large code base with over 950K PDG nodes and 18B

PDG edges, the construction of PDG can be completed within 2 minutes.

8.1. Future Work

Although SVF already provides a huge improvement in removing false positive memory

data dependence, we believe there still has plenty of room to explore in the future.

Firstly, implementing a flow-sensitive, context-sensitive pointer analysis on the value-

flow graph generated to further removing those false positive memory dependence.
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Secondly, querying through getModRefInfo APIs to get a better understanding of the

mod-ref relation on a specific memory location through SVF. Our three pull requests

have already been merged by the author into master branch of SVF to query the mod-ref

information. These commits provide a solid base for us to use getModRefInfo APIs in the

future.

• delay inclusion of mod to ref to preserve useful mod-ref analysis result (5a1cccd).

• add getModRefInfo APIs support for SVF (525fde5).

• Refine getModRefInfo APIs to accomodate with field-sensitivity of SVF (95eb264).

Finally, using sub edge mechanism in NOELLE to explore more parallelism oppor-

tunities. These sub edges provide detailed dependence information. Instead of adding a

memory data dependence edge between two function calls who have memory data depen-

dence in between, a sub edge connected from two instructions inside the callee functions

where the memory data dependence actually happens allows more parallelization oppor-

tunities for instructions who should not be blocked by the memory data dependence.
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