
Compiling Loop-Based Nested Parallelism for
Irregular Workloads

Yian Su

Northwestern University

Evanston, IL, USA

Mike Rainey

Carnegie Mellon University

Pittsburgh, PA, USA

Nick Wanninger

Northwestern University

Evanston, IL, USA

Nadharm Dhiantravan

Northwestern University

Evanston, IL, USA

Jasper Liang

Northwestern University

Evanston, IL, USA

Umut A. Acar

Carnegie Mellon University

Pittsburgh, PA, USA

Peter Dinda

Northwestern University

Evanston, IL, USA

Simone Campanoni

Northwestern University

Evanston, IL, USA

Abstract
Modern programming languages offer special syntax and

semantics for logical fork-join parallelism in the form of par-

allel loops, allowing them to be nested, e.g., a parallel loop

within another parallel loop. This expressiveness comes at a

price, however: on modern multicore systems, realizing logi-

cal parallelism results in overheads due to the creation and

management of parallel tasks, which can wipe out the bene-

fits of parallelism. Today, we expect application programmers

to cope with it by manually tuning and optimizing their code.

Such tuning requires programmers to reason about architec-

tural factors hidden behind layers of software abstractions,

such as task scheduling and load balancing. Managing these

factors is particularly challenging when workloads are irreg-

ular because their performance is input-sensitive. This paper

presents HBC, the first compiler that translates C/C++ pro-

grams with high-level, fork-join constructs (e.g., OpenMP)

to binaries capable of automatically controlling the cost of

parallelism and dealing with irregular, input-sensitive work-

loads. The basis of our approach is Heartbeat Scheduling, a

recent proposal for automatic granularity control, which is

backed by formal guarantees on performance. HBC binaries

outperform OpenMP binaries for workloads for which even

entirely manual solutions struggle to find the right balance

between parallelism and its costs.

ACM Reference Format:
Yian Su, Mike Rainey, Nick Wanninger, Nadharm Dhiantravan,

Jasper Liang, Umut A. Acar, Peter Dinda, and Simone Campanoni.

2024. Compiling Loop-Based Nested Parallelism for Irregular Work-

loads. In 29th ACM International Conference on Architectural Support

This work is licensed under a Creative Commons Attribution International
4.0 License.
ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0385-0/24/04.
https://doi.org/10.1145/3620665.3640405

for Programming Languages and Operating Systems, Volume 2 (ASP-
LOS ’24), April 27-May 1, 2024, La Jolla, CA, USA. ACM, New York,

NY, USA, 19 pages. https://doi.org/10.1145/3620665.3640405

1 Introduction
Parallel programming continues to be hampered by the in-

ability of compilers to translate fork-join nested parallelism

in client programs into binaries that perform close to the

limits of modern multicore hardware. One reason is that a

binary that actually executes all possible parallel tasks de-

scribed by high-level fork-join constructs (e.g., the parallel
for of OpenMP) immediately encounters a massive overhead

that results in slowdowns measured in orders of magnitude,

thereby squashing all benefits of parallelism. Just spawning

a parallel task/thread requires a few thousand cycles (even in

a customized OS and even for the latest OS solutions), with

context-switch costs being similar [21, 23]. Unfortunately, ir-

regular workloads like sparse tensor computation and graph

analytics tend to have many independent loop iterations

that only take a few tens of clock cycles [6]. Spawning one

parallel task per loop iteration in these workloads easily

leads to slowing down execution rather than speeding it up,

both due to task-spawning overheads and the barrage of

context switches due to having many more tasks (e.g., loop

iterations) than cores. In a run-time environment without

preemption, the context-switch problem may be diminished,

but the potential for excessive task-related costs remains.

On the other hand, coarsening loop iterations (known as

chunking) to generate fewer tasks can easily degrade per-

formance by starving cores of tasks. This is the old problem

of parallelism granularity control [11, 13, 22]1. For example,

consider a loop where each iteration processes an element of

an input vector, and the amount of computation performed

depends on whether the element is non-zero. If the vector’s

non-zeros are not uniformly distributed, then static chunking

leads to an unbalanced computation. Because the fork-join

model requires a barrier at the end, the slowest task (the

unlucky one with the most non-zeros, say) dictates the la-

tency of the entire loop. The cores running the faster tasks

(processing fewer non-zeros) are now idle for a substantial

1
Our results in Section 6.7 corroborate this prior work.

232

https://doi.org/10.1145/3620665.3640405
https://doi.org/10.1145/3620665.3640405
https://creativecommons.org/licenses/by/4.0/
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3620665.3640405&domain=pdf&date_stamp=2024-04-27

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Su et al.

period of time. The appropriate chunking to avoid this is

input-dependent. Clearly, we need a dynamic solution.

The status quo places the burden on the application pro-

grammer’s shoulders. Accordingly, programmers sidestep

compilers by expressing a specific parallelism granularity

in their code, with the hope of achieving the right balance

between fork-join overhead and maximizing the program’s

performance on their multi-core CPU. But this decision is

typically not transferable between platforms, as it depends

on architecture-specific aspects related to its out-of-order

capabilities (e.g., instruction-issue widths) and inter-core

communication costs, as well as OS-specific aspects like

thread-creation and thread-switching costs [48]. Such com-

plications are most noticeable and difficult to manage in

a certain, increasingly important class of applications that

is characterized by its workload being irregular, its perfor-

mance characteristics being significantly influenced by the

input, and its input being drawn from a large range of pos-

sible shapes. Recent applications of this kind include those

that perform significant amounts of sparse-matrix compu-

tation, e.g., in machine-learning algorithms [19], those that

use a domain-specific language, e.g., for tensor algebra [29],

or those that analyze large graphs [55]. For applications

featuring such irregular parallelism, the granularity-control

problem threatens to result in either a platform-specific, hard-

to-maintain, and costly codebase, or binaries that do not

leverage the full potential of the underlying architecture.

Recent research produced an alternative approach to gran-

ularity control, known as heartbeat scheduling [1]. It is the

first approach that provably controls the overheads of par-

allelism automatically, without embedding platform-specific
aspects into the program’s code. At a high level, the prop-

erties proven for heartbeat scheduling are twofold: task-

related costs are well amortized and the asymptotic amount

of parallelism in the source program is preserved. Heartbeat

scheduling works by postponing the decision of generating

additional parallelism to run-time and makes that decision

online, at a regularly occurring event, called the heartbeat. A

heartbeat happens at a fixed rate while the program executes,

and enables the program to continuously adapt to chang-

ing parallelism. The essential takeaway is that heartbeat

scheduling lets programmers express all possible fork-join
parallelism in their algorithm while allowing the runtime to

decide which portion to materialize and when.

Heartbeat scheduling implementations currently require

programmers to write their code, at least in part, in assembly.

The reason is that the implementations require the code to

be structured in an unconventional style, even though the

program’s code does not make granularity control decisions

itself. A mapping to such a bespoke program structure from

high-level fork-join programs is not supported by today’s

compilers. This gap leaves heartbeat scheduling in the hands

of a few highly capable programmers with significant time

to invest in restructuring their code. We seek to democratize

heartbeat scheduling, allowing all programmers to reap its

benefits. This requires a compiler that can automatically

translate high-level fork-join constructs into a binary that is

amenable to heartbeat scheduling at runtime.

This paper describes the first compiler capable of automat-

ically generating binaries that are compatible with heartbeat

scheduling. The heartbeat compiler (HBC) consumes an or-

dinary C/C++ program with high-level fork-join constructs,

like those available in OpenMP or Cilk. HBC then automati-

cally deconstructs the code into tasks that can be further split

when driven by heartbeat events. The heartbeat linker (also

introduced by this paper) modifies the generated assembly

both to link a signaling mechanism to generate heartbeats

and to link with the heartbeat runtime. Binaries generated

by HBC from programs with irregular workloads have sig-

nificantly better performance than binaries generated by

a more conventional OpenMP compiler. Compared to se-

quential execution, HBC boosts the performance of irregular

workloads from 14.2× (OpenMP) to 21.7× (Heartbeat) on a

64-core Intel-based machine (Fig. 4). Finally, the performance

of binaries generated with HBC, which compiles them in

just a few seconds, is comparable to what was previously

obtained by manually writing heartbeat scheduling binaries

over several months [42].

The contributions of this paper are:

• We introduce the first compiler capable of realizing heart-

beat scheduling in a fully automated manner, generating a

binary from given C/C++ programs with loops, which are

written using conventional high-level fork-join constructs.

• We introduce the first linker capable of automatically

embedding into a binary the rollforwarding mechanism,

which prior work proposed for heartbeat scheduling.

• We introduce a new algorithm for automatically generat-

ing all possible parallel tasks from nested loops that can be

parallelized by heartbeat scheduling. This improvement

includes the generation of what we call the leftover tasks
that were not generated before.

• We design, implement, and evaluate the first compilation

pipeline to automatically generate binaries that are capable

of performing heartbeat software polling (i.e., continuous

checking if an event happened) with little overhead.

• We design, implement, and evaluate the first interrupt-

based mechanism to deliver heartbeats on Linux with a

custom kernel module to reduce the latency of delivering

heartbeats.

• We compare for the first time two signaling mechanisms

that are both able to deliver heartbeats. This comparison

suggests a counter-intuitive result: software polling is as

good as interrupt-based mechanisms.

2 Background
To summarize key background concepts, we use the fol-

lowing running example: the sparse-matrix by dense-vector

233

Compiling Loop-Based Nested Parallelism for Irregular Workloads ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

0

1

2

3

4

5

6

7

(b) Task state after the first
heartbeat

(c) Task state after the second
heartbeat

non-zero
(unprocess-
ed)

heartbeat

heartbeat
task

non-zero
(processed)

void spmv(int n, double *val, // number of rows and non-zeros
 int *row_ptr, int *col_ind, // non-zero row and col indices
 double *in, double *out) { // in and out vectors
 for (int i = 0; i < n; i++) { // row loop
 double result = 0.0;
 for (int j = row_ptr[i]; j < row_ptr[i+1]; j++) { // col loop
 result += val[j] * in[col_ind[j]];
 }
 out[i] = result;
 }
} (a) spmv serial implementation in C/C++

Figure 1. spmv and the heartbeat execution model.

product (spmv, shown in Fig. 1(a)). We use the implementa-

tion of spmv that expects its input matrix to be represented in

compressed sparse-row format. The inner and outer loops are

parallelized by annotating them as DOALL loops (and treat-

ing the reduction variable result appropriately). A DOALL

loop is a loop where all iterations can run in parallel, in a

fork-join execution model, without communication between

them. The DOALL decoration can be done using, e.g., the

OpenMP parallel for construct.
Iterations of a DOALL loop run in parallel by creating

and executing tasks. First, tasks are created by partitioning

the loop iterations (one task per iteration at the finest gran-

ularity). Then, tasks are dispatched at run-time to parallel

threads (via thread-specific queues) that run on the parallel

cores of the underlying architecture (one thread per core).

Notice that the number of tasks can safely (and typically

does) exceed the total number of threads or cores.

The parallelism granularity-control problem. If spmv’s
DOALL loops were to maximize parallelism and spawn a

task for each iteration, spmv would risk losing its parallel

speedup to the overhead costs of creating and managing

tasks. Task overheads can be amortized by assigning multi-

ple subsequent loop iterations (called chunk) to a task. This

operation is called chunking and the number of iterations

assigned to a task is called the chunk size. OpenMP (like

other languages) allows programmers to manually specify

the chunk size of a loop. But tuning the chunk size risks

pruning away too much parallelism, and even if the program

is well-tuned, there is a risk of overfitting [47]. Achieving

consistent granularity control is further challenged by irreg-

ularity in workloads. For example, our spmv is highly input

dependent, and consequently, based on the sparsity pattern

of the matrix, the concentration of parallelism may fluctuate

between its two loops.

Heartbeat scheduling. Heartbeat scheduling achieves

granularity control for nested fork-join constructs in an adap-

tive manner by ensuring that each task is amortized against

a specified amount of useful work in the program. That

amount is determined by the heartbeat rate, a system-wide

parameter that controls the rate at which tasks are spawned.

Let us see it in action by stepping through spmv when called

on a well-known challenge input, the arrowhead matrix,

whose diagonal, first row, and first column are filled with

non-zero elements. Suppose, for explanatory purposes, the

heartbeat rate takes as much time as is needed to process 3

non-zero elements. Now, after (serially) processing up to the

3
rd
element of the first row, our initial task has been running

for enough time to be interrupted by a heartbeat. When it

arrives, the interrupt kickstarts a promotion. Promotion is

the process used by heartbeat scheduling to activate latent

parallelism (in our case, the remaining loop iterations) held

by a running task.

Under the hood, this two-step process of interrupt, fol-

lowed by promotion, is implemented by the coordination

of two mechanisms. The interrupt is driven by a hardware-

based timer interrupt. Promotion happens downstream of

an interrupt, where it reifies the loop context, divides up

loop iterations, and parcels out the pieces to new tasks. This

latter mechanism is called the promotion-ready program point
(PRPPT) [42]. These two mechanisms are linked together by

the application of a classic technique for synchronizing in

the presence of interrupts known as rollforwarding [36] (see

§4 for details).

To ensure parallel scalability, heartbeat scheduling assigns

the highest priority to outermost parallelism, a policy we

call the outer-loop-first policy. Let us see the policy in

action in our running spmv, where we left off. As it enters its
promotion handler, our running task sees latent parallelism

in the outer loop, making that loop the target for promotion.

The result is depicted in Fig. 1(b), where we see an even

division of the remaining iteration space split into two sub-

tasks. This process continues in a recursive fashion. The

diagram in Fig. 1(c) shows a future program state after two

more heartbeats, treated by each of the previous two tasks.

Current heartbeat scheduling implementation. Re-
cent work proposed TPAL, the state-of-the-art, low-level

model for heartbeat scheduling, but TPAL does not address

automation: each TPAL benchmark started as a C++ source

program and was manually modified by inserting PRPPTs,

as needed. Further manual intervention was needed to miti-

gate performance issues related to PRPPTs, which required

loop chunking by hand. Definitions of the PRPPT handler

functions themselves require custom logic, which had to

be written by hand. The back-end of TPAL used a semi-

automatic rollforward compiler, which required significant

human intervention. Finally, although crucial for practical

performance, TPAL provided no comprehensive solution for

234

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Su et al.

Heartbeat Linker

Heartbeat RuntimeMiddle-end

Task Linking (§3.4)

Loop Nested Tree
Outlining (§3.1) Loop-Slice Task Generation (§3.2)

Interprocedural
loop hierarchy
identification Loop

closure
generation

Loop iterations
slice
parameterization

Loop
chunking
transformation

Promotion
point
insertion Task

Scheduler

Adaptive
Chunking
(§5.1)

Heartbeat Compiler (HBC)
Heartbeat
Mechanism
Embedding (§4)

Code
linker

Linux Kernel
Module (§5.2)

C/C++
sources
with
explicit
DOALL
loops

Binary

Leftover task
generation
(§3.3)

Loop outlining Tasks LinkerMaking the tasks
invocable by the runtime

Front-end Back-end

Promotion
Handler

A

B C

F

G

D

E

Figure 2. Compilation pipeline of HBC including a custom linker and runtime.

driving interrupts. Its approach was based on special sup-

port in a research kernel. A similarly effective solution for a

commodity OS is lacking.

3 The Heartbeat Compiler (HBC)
The HBC pipeline (Fig. 2) takes C/C++ source files, where

parallelism is specified by DOALL annotations, and lowers

the program via a series of passes, resulting in a binary that

implements heartbeat scheduling. The front-end of our HBC

pipeline is an extension to the compiler clang that identifies
all DOALL annotations in the program and emits them in

the form of custom LLVM IR metadata terms. Our metadata-

enhanced LLVM IR is consumed by a series of passes we

implemented as extensions of LLVM’s middle end. These

lowering passes isolate DOALL loops by outlining them into

separate functions and building a representation of their

nesting structure (§3.1). This nesting structure is used by our

middle-end passes to automate the generation of PRPPTs.

To do so, the middle-end computes the closure of each out-

lined loop such that the generated function can be invoked to

execute a specific set of subsequent loop iterations (e.g., from

5
𝑡ℎ

to 9
𝑡ℎ

iteration) while being able to promote parallelism

at runtime (§3.2). The result is a set of functions (one per

DOALL loop) that can be invoked as parallel tasks, called

loop-slice tasks. After generating the loop-slice tasks, the

HBC middle-end generates the leftover tasks (§3.3). Accord-
ing to the outer-loop-first policy of heartbeat scheduling,

the decision of splitting the parallel task 𝑇𝑜 related to an

outer loop 𝐿𝑜 while running its 𝑧𝑡ℎ iteration can be made

during the execution of the 𝑗𝑡ℎ iteration of one of its inner

loops 𝐿𝑖 . To maximize parallelism, our work splits 𝑇𝑜 into

three parallel tasks whose code is generated at compile time.

The first one is the execution of the loop-slice task of 𝐿𝑜 to

execute the first half of the iterations left of 𝐿𝑜 . The second

one invokes the same loop-slice task but executes the second

half of the iterations left of 𝐿𝑜 . The last task will execute the

remaining computation of the 𝑧𝑡ℎ iteration of 𝐿𝑜 , which in-

cludes the remaining computation of the current invocation

of 𝐿𝑖 (from its 𝑗 + 1𝑡ℎ iteration to the end) as well as the code

from the end of 𝐿𝑖 to the end of the 𝑧
𝑡ℎ

iteration of 𝐿𝑜 . We call

this last task a leftover task. As shown in Fig. 1(b), the first

two loop-slice tasks generated by HBC cover the remaining

iterations of the row loop from 1 to 7. And a third leftover

task covers the rest of the iterations of col loop from 3 to 7,
and the remaining computation after invoking the col loop

of row 0. That is, out[i] = result.
After generating both loop-slice tasks and leftover tasks,

the HBC middle-end links them into the original code (§3.4).

This is done by first modifying the above tasks to make

them controllable and invocable by the HBC runtime (so the

runtime can perform parallelism promotions), and then it

replaces the original IR code of the target loops with invoca-

tions of the loop-slice tasks where the slice specified is the

entire iteration space of the related loop. Hence, if no pro-

motion happens at runtime, the execution stays sequential.

After the passes in the middle-end, we lower the program

to binary code, using an off-the-shelf back-end available in

the LLVM codebase (e.g., the intel x86_64 back-end). The

output program then reaches our heartbeat linker, the final

stage of our pipeline. The heartbeat linker enables the heart-

beat to be seen by the running program by injecting hooks

from the runtime into the program’s IR.

3.1 Loop Nested Tree Outlining
Themiddle-end starts by outlining all DOALL loops. For each

loop of this set, a conventional data-flow analysis identifies

its live-in and live-out variables. Then, a function is created to

copy the loop in it as done by prior work [5, 7, 14, 33, 37]. This

function has live-ins of the loop as parameters and its live-

out variables are passed as references. Now the loop can be

executed by invoking the function with proper parameters.

The resulting functions are then modified to replace any

nested DOALL loops with a call to their outlined versions.

Live-ins and pointers of the live-outs of a nested DOALL

loop are passed via parameters of the injected call. Live-outs

are allocated on the caller’s stack.

235

Compiling Loop-Based Nested Parallelism for Irregular Workloads ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

HBC needs to represent the original nesting relation of

DOALL loops because it is needed by the heartbeat run-

time to implement promotions. Hence, HBC extends the

loop-nesting-relation analysis in LLVM to make it inter-

procedural. The result of this analysis is a directed graph

where nodes are loops and edges represent the nesting re-

lation from a parent loop to one of its children (similarly

to [8]). HBC prunes this graph to remove all nodes that do

not represent DOALL loops. The result is a tree because the

original DOALL loops formed a tree (they came from the

same original function).

Our solution follows the general approach of OpenMP

compilers, where DOALL loops are outlined first into sepa-

rate functions before reaching themiddle-end. An alternative

solution to this problem is to compute the loop-nesting re-

lation of the original code and then implement an ad-hoc

outliner transformation that also generates the mapping

from the original loops to the new ones that now belong to

different functions. This solution would be equivalent to the

one we implemented. We chose our solution to allow us to

re-use the general-purpose outliner transformation already

available in conventional compilers, which does not provide

the loop mapping mentioned above.

The inter-procedural loop nesting tree is used to compute

the IDs of each DOALL loop. The ID of a DOALL loop is a

pair (level, index), where level represents the nesting
level of that loop, starting from 0 for the root loop, and index
represents the position of the loop within its respective nest-

ing level, incrementing from 0 onwards. The root loop has an

index value of 0. In spmv, the row loop has the identification

pair (0, 0) and the col loop has the identification (1, 0).

3.2 Loop-slice task generation
Following Fig. 1(b), when the first heartbeat interrupts spmv’s
col loop, a promotion handler is called to spawn parallel

tasks. To seed the task, we need the loop’s environment. The

challenge is that the loop we need to promote (the row loop)

is not the loop that was in execution at the time a heartbeat

was received (the col loop). To solve it, we need to pass the

environment of the row loop to the inner col loop and its

promotion handler. To do so, HBC generates code to cou-

ple each loop with a data structure that captures its closure,

its iteration space, and its induction variable. We call this

structure the Loop-Slice Task (LST) context. LST contexts of a

given DOALL loop of a loop nesting tree are allocated before

the outermost loop of that tree (the root loop) is invoked.

These LST contexts are passed down to all nested loops as a

set. When a nested loop invokes the promotion handler, all

loops’ LST contexts are accessible to the promotion handler

to seed any task that runs any parent loop.

Loop closure generation. HBC first modifies the signa-

ture of the outlined DOALL loops of each loop-nesting tree

such that all parameters are replaced by a pointer to a set of

LST contexts, which includes the LST context of the invoked

loop itself. The outlined loop function is now considered a

loop-slice task. Next, HBC generates code to load live-ins,

live-outs, and iteration space to run from the corresponding

LST context and replaces all values previously read from the

function parameters with loaded values.

Promotion point insertion. HBC inserts a call to the

promotion handler at the latch of a DOALL loop, for all

DOALL loops, to enable promotion within a loop-slice task.

The latch of a loop 𝐿 is a basic block within 𝐿 that is the

predecessor of the header of 𝐿 [4]. DOALL loops only have

one latch.

The promotion handler returns whether a promotion hap-

pened (1) or not (0). When a promotion happens, the promo-

tion handler returns only when the execution of all remain-

ing loop iterations has been completed. Therefore, HBC adds

a conditional branch to read the value returned by the pro-

motion handler to exit the loop when a promotion happens.

Loop chunking transformation. The promotion han-

dler inserted by HBC can degrade performance because the

call breaks up the control flow of the target loop, blocks

compiler optimizations, and can impose dynamic costs (de-

pending on which mechanism the heartbeat linker uses to

drive heartbeats). To mitigate such costs, the loop chunking

transformation modifies the target loop to invoke the pro-

motion handler every 𝑆 number of iterations (called chunk

size). This is obtained by creating within the target loop a

sub-loop 𝐿𝑠 whose body contains only the original code of

the target loop.

The loop chunking transformation needs to guarantee that

the promotion handler is invoked every 𝑆 iteration. This re-

quires extra code for when the number of iterations executed

by the original loop is not a multiple of 𝑆 . In more detail, a

chunk can be partially finished within a given invocation

of the target loop (e.g., 𝑆 is bigger than the total number of

loop iterations). Therefore, a task needs to track how many

iterations remain to be executed till the full completion of a

chunk between (potentially several) loop invocations. To do

so, each task maintains a private counter 𝑅 (initialized to 𝑆),

and the number of iterations of 𝐿𝑠 is set to be the minimum

between 𝑅 and the number of iterations left to finish the

current invocation of the target loop. The chunking trans-

formation adds a check after 𝐿𝑠 , which will execute after 𝐿𝑠
finishes its iterations. It compares the number of iterations

𝐶 executed by 𝐿𝑠 to 𝑅, and it invokes the promotion handler

only if they match (and reinitializes 𝑅 to 𝑆). Otherwise, it

updates 𝑅 to be 𝑅 −𝐶 (called chunk size transferring).

The loop chunking transformation is applied to every

innermost DOALL loop of a loop nesting tree. Finally, the

chunk size 𝑆 is determined by a dynamic technique (§4).

236

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Su et al.

Algorithm 1 Generating all leftover tasks between loop

pairs.

Input: 𝑡 : Loop nesting tree

Input: 𝑠: Set of all LST contexts of all loops

1: for all 𝑙 : 𝑡 .𝑔𝑒𝑡𝐿𝑒𝑎𝑣𝑒𝑠 () do
2: 𝑝 ← 𝑙 .𝑔𝑒𝑡𝑃𝑎𝑟𝑒𝑛𝑡 ()
3: while 𝑝 do
4: GenerateLeftoverTask(𝑙, 𝑝, 𝑠)
5: 𝑝 ← 𝑝.𝑔𝑒𝑡𝑃𝑎𝑟𝑒𝑛𝑡 ()

3.3 Leftover task generation
This compilation step generates all possible leftover tasks

of a loop nesting tree of DOALL loops. The generation of

such tasks allows HBC to generate additional parallelism

compared to prior work, as the leftover task of a promotion

can now run in parallel with the other two tasks generated

with it. This opportunity was not explored by prior work

because tasks were written manually and the number of

leftover tasks can grow quadratically with the number of

loops in a nesting tree. Hence, it is too much to ask from

a programmer to write them all. However, HBC generates

them automaticallywhile keeping the code size under control

by sharing code between leftover tasks.

Iterating over possible leftover tasks. The possible left-
over tasks depend on the shape of the loop nesting tree.

They are generated using Algorithms 1 and 2. Algorithm 1

takes as input a loop nesting tree of DOALL loops and all

LST contexts. The algorithm identifies the need for gener-

ating a leftover task for a pair of loops (𝐿𝑖 , 𝐿𝑗). The loop

𝐿𝑖 represents the loop that gets a heartbeat that leads to a

promotion; 𝐿 𝑗 represents the loop that gets split. To identify

the above set of pairs, Algorithm 1 iterates over the leaves of

the loop-nesting tree (line 1). For each leaf 𝑙 , it iterates over

its ancestors starting from its parent (lines 2-5). For each

ancestor 𝑝 , the pair (𝑙, 𝑝) is identified and the associated

leftover task is generated by invoking Algorithm 2 (line 4).

Code generation of a leftover task. For each (𝐿𝑖 , 𝐿𝑗) pair
found in Algorithm 1, HBC creates a leftover task that will

execute in that case. Thus, HBC implements Algorithm 2

taking as input 𝐿𝑖 and 𝐿 𝑗 that represent the case where 𝐿𝑖 gets

a heartbeat and 𝐿 𝑗 gets split. It also takes as input the LST

contexts of the loops included in the current loop nesting

tree. The output is the leftover task 𝑡 for the (𝐿𝑖 , 𝐿𝑗) case.
The algorithm starts by creating a new empty leftover

task 𝑡 (line 2) followed by increasing the induction variable

by 1 of the LST context used by 𝐿𝑖 when it gets a heartbeat

(lines 3-4). The algorithm then adds the code to invoke the

loop-slice task of 𝐿𝑖 starting from its next iteration until the

end (line 5). At this point, Algorithm 2 has generated the

code for 𝑡 to complete the current invocation of 𝐿𝑖 .

What is left for the algorithm is to append the code that

composes the work between the end of 𝐿𝑖 to the end of the

current iteration of 𝐿 𝑗 , referred as tail work. To do so, it

Algorithm 2 Generating a leftover task between two loops.

Input: 𝐿𝑖 : Loop that gets a heartbeat

Input: 𝐿𝑗 : Loop that gets split

Input: 𝑠: Set of all LST contexts of all loops

1: function GenerateLeftoverTask(𝐿𝑖 , 𝐿𝑗 , 𝑠)

2: 𝑡 ← 𝑛𝑒𝑤 𝐿𝑒 𝑓 𝑡𝑜𝑣𝑒𝑟𝑇𝑎𝑠𝑘 ()
3: 𝑡 .𝑎𝑑𝑑𝐶𝑜𝑑𝑒 (𝑐 ← 𝑠 .𝑔𝑒𝑡𝐿𝑆𝑇𝐶𝑜𝑛𝑡𝑒𝑥𝑡 (𝐿𝑖))
4: 𝑡 .𝑎𝑑𝑑𝐶𝑜𝑑𝑒 (𝑐.𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒𝐼𝑉 (1))
5: 𝑡 .𝑎𝑑𝑑𝐶𝑜𝑑𝑒 (𝑐𝑎𝑙𝑙 LoopSliceTask(𝐿𝑖 , 𝑐))
6: 𝑝𝑟𝑒𝑣 ← 𝐿𝑖
7: 𝑝 ← 𝐿𝑖 .𝑔𝑒𝑡𝑃𝑎𝑟𝑒𝑛𝑡 ()
8: while 𝑝 ≠ 𝐿𝑗 do
9: 𝑡 .𝑎𝑑𝑑𝐶𝑜𝑑𝑒 (𝑐 ← 𝑠 .𝑔𝑒𝑡𝐿𝑆𝑇𝐶𝑜𝑛𝑡𝑒𝑥𝑡 (𝑝))
10: 𝑡 .𝑎𝑑𝑑𝐶𝑜𝑑𝑒 (TailWork(𝑝, 𝑝𝑟𝑒𝑣, 𝑐))
11: 𝑡 .𝑎𝑑𝑑𝐶𝑜𝑑𝑒 (𝑐.𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒𝐼𝑉 (1))
12: 𝑡 .𝑎𝑑𝑑𝐶𝑜𝑑𝑒 (𝑐𝑎𝑙𝑙 LoopSliceTask(𝑝, 𝑐))
13: 𝑝𝑟𝑒𝑣 ← 𝑝

14: 𝑝 ← 𝑝.𝑔𝑒𝑡𝑃𝑎𝑟𝑒𝑛𝑡 ()
15: 𝑡 .𝑎𝑑𝑑𝐶𝑜𝑑𝑒 (𝑐 ← 𝑠 .𝑔𝑒𝑡𝐿𝑆𝑇𝐶𝑜𝑛𝑡𝑒𝑥𝑡 (𝐿𝑗))
16: 𝑡 .𝑎𝑑𝑑𝐶𝑜𝑑𝑒 (TailWork(𝐿𝑖 , 𝑝𝑟𝑒𝑣, 𝑐))

iterates over the ancestors of 𝐿𝑖 starting from its parent to

the ancestor just before reaching 𝐿 𝑗 (lines 8-14). For each

ancestor 𝑝 , Algorithm 2 adds code to get its LST context,

which contains the current induction variable of 𝑝 (line 9).

It then places the tail work of 𝑝 , which composes of the

code after invoking the previous ancestor till the end of the

body of loop 𝑝 using 𝑝’s LST context (line 10). After that,

Algorithm 2 increases 𝑝’s induction variable by 1 and invokes

𝑝’s loop-slice task passing its updated LST context (lines 11-

12). Finally, the algorithm adds code for the tail work of 𝐿 𝑗

using its LST context after invoking its previous ancestor

(lines 15-16).

3.4 Task linking
At this point of the compilation pipeline, the HBC middle-

end has generated all possible tasks that could run in parallel.

To be performant the heartbeat runtime also needs to quickly

access the right triple of tasks that will instantiate when a

heartbeat happens. This triple depends both on the innermost

loop that has received the heartbeat and the loop that gets

split. Because of this, the HBCmiddle-end ends with the next

two steps. First, all tasks are organized to enable an efficient

identification of the triple of tasks. Then, the tasks are linked

into the program by allocating and initializing the necessary

LST contexts of the DOALL loops of a loop nesting tree. This

allocation is performed just before jumping to the header of

the root of the corresponding loop nesting tree.

Making the tasks invocable by the runtime. To help

the heartbeat runtime to quickly find the right task to invoke

for a promotion, this step takes advantage of the structure

of the loop IDs described in §3.1. The middle-end allocates

a two-dimensional array for every loop nesting tree with

DOALL loops. This array is called the loop-slice task array

237

Compiling Loop-Based Nested Parallelism for Irregular Workloads ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

Figure 3. Sequence of transformations of spmv that are performed by the HBC’s middle-end. We used C++ code for readability

and illustrative purposes. HBC performs these transformations in LLVM IR. The white letter in a red cyrcle attached to the

code surrounded by a rectangular red box indicates where in the pipeline of Fig. 2 that code is added.

of a loop nesting tree. Each value of this array is a pointer

to the function of a loop-slice task. The array is passed as

a parameter to the promotion handler inside all loop-slice

tasks that compose this nesting tree. The level and index
that compose the ID of a loop are used as the row and column

of the loop-slice task array. The value obtained at that row

and column is the pointer of the loop-slice task with that

specific loop ID. The loop-slice task array is allocated as

globals and are statically initialized.

Leftover tasks also need to be efficiently retrieved by the

heartbeat runtime. To this end, the HBCmiddle-end allocates

a hash table called the leftover task table where it returns
the pointer to the function of a leftover task from a pair of

loop IDs. The first ID of the input pair is the loop that has

received the heartbeat. The second ID is of the loop that gets

split. A perfect hashing function is generated at compile time

to perform this mapping. Finally, the leftover task table is

allocated as global, statically initialized, and the signatures

of all tasks are modified to take a leftover task table.

Tasks linker. The last step of the HBCmiddle-end is to al-

locate the LST contexts for all loop nesting trees with DOALL

loops. For every loop-nesting tree, it replaces the code of

the loop at the root of the tree with a call to the equivalent

loop-slice task after preparing the initial environment and

specifying the whole iteration space for that loop inside its

LST context. Any call to a nested loop inside a loop-slice

task is replaced by the call to its corresponding loop-slice

task, with the environment and the iteration space set by the

parent loop. Fig. 3 shows the full transformation of spmv.

4 Heartbeat Linker
HBC implements two mechanisms for handling heartbeats:

software polling and hardware interrupts. Software polling

proactively reads the timestamp register to decide if a heart-

beat has arrived. Hardware interrupts invoke heartbeat pro-

cessing on receipt of a timer interrupt. HBC uses software

polling by default as it delivers better average performance

on an unmodified Linux platform (§6.5), but allows the user

to select either heartbeat mechanism.

Software polling injection. The linker injects the polling
function at PRPPTs (§2) and guards the promotion handler

call with a conditional branch. The polling function reads

the timestamp register (i.e, TSC for x86) to tell whether a

238

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Su et al.

heartbeat has arrived. If it has, the promotion handler gets

called, generating parallelism. Otherwise, it does not.

Hardware interrupt enablement via rollforwarding
compilation. In software polling, we always pay the cost of

the polls. In contrast, using hardware timer interrupts avoids

this, but an interrupt can arrive at any assembly instruction,

not just at PRPPTs, and thus rollforwarding [36] is needed.

Conceptually, we implement rollforwarding by having

the hardware interrupt trigger an instruction pointer switch

from the “source” version of the object code (which contains

no polls) to the “destination” version (which contains the

polls). A mapping table (the “rollforward table”) from source

to destination instruction addresses is included in the binary

and used by the hardware interrupt mechanism (§5.2) to

find the appropriate “destination” address to switch to. An

inverse table (the “rollback table”) is also needed.

Our rollforward compiler (RFC) automates the process of

producing the source and destination code (at the assem-

bly level), and tables. RFC is a source-to-source translator

that operates over the assembly intermediate file (the “.s
file”). To generate the source, every input line is prepended

with a new label we generate based on its line number (e.g.

__RF_SRC_42). Lines that involve polling have their instruc-

tion elided. To generate the destination, every input line is

repeated, but now prepended with a label that corresponds

to the source line (e.g. __RF_DST_42). In the destination, the

polling instructions are left in place. Finally, we emit the ta-

bles, mapping between the newly introduced labels (i.e., we

add __RF_SRC_42↔ __RF_DST_42). GNU ld resolves all the
labels to addresses. Special care is taken to handle numerous

edge cases and other issues.

Despite the apparent complexity of this transform, the

novelty of RFC is that it operates entirely using regular ex-

pressions, instead of requiring compiler backend changes or

assembler modifications. RFC comprises 250 lines of dense

Perl. It takes < 1 second to translate each of our benchmarks.

5 Heartbeat Runtime
This section describes the two runtimes that we designed

for the two heartbeat solutions we implemented for HBC:

software polling and interrupt-based solutions.

5.1 Software Polling using Adaptive Chunking (AC)
AC dynamically updates the chunk size of a leaf loop to

reduce the number of wasted polls per heartbeat. The initial

chunk size is set to 1. The runtime runs a sliding window

algorithm [31] where the loop chunk size is updated only at

the end of the window when a given number of heartbeats

(called the window size) have been received. Each worker

thread keeps track of how many times the polling function

is invoked since the last heartbeat. On each heartbeat, the

runtime logs the number of polls made during that heartbeat

interval. After the number of heartbeats that compose the

window, a thread records the minimum number of polls in

the log since the beginning of the window. Then, it computes

the ratio of the minimal poll count to a target polling count.
This ratio is then multiplied to the current chunk size to form

the new chunk size (minimum 1) for the worker thread.

5.2 Hardware Interrupt-based Solutions
HBC supports hardware interrupt-based heartbeats using

either portable user-level code or a Linux kernel module.

Interrupt Ping Thread for Purely User-level Operation.
This mechanism uses the POSIX SIGALRM signal to drive the

heartbeat via the ping thread model from earlier work [42].

Kernel Module for Accelerated Operation. In earlier

work [42], an alternative mechanism was proposed and eval-

uated that used the x86 APIC hardware timer and inter-

processor interrupt (IPI) mechanisms directly. While this

dramatically improves heartbeat accuracy, precision, and

scalability, it requires the non-trivial inclusion of the appli-

cation directly into a specialized kernel. As a middle ground,

we developed a Linux kernel module that provides many of

the same benefits, while requiring no application changes.

Our kernel module configures one core to use the kernel’s

hrtimer interface, a thin veneer over the APIC timer, and

allows the runtime to configure heartbeat rates. A timer in-

terrupt invokes the module, which in turn broadcasts an IPI

to all current heartbeat-enabled cores. Each of these deter-

mines if the current interrupted user thread is a heartbeat

application thread. If it is, the handler searches the rollfor-

ward table for the interrupted “source” RIP and finds its

corresponding “destination”. It then edits the return address

of its own interrupt frame so that on IRET, control returns to

the destination address, switching to the rollforward code.

Unlike a ping thread, this structure operates mostly in ker-

nel, directly using the hardware. It also avoids the high cost

of general-purpose POSIX signal injection. An event requires

only 3800 cycles (user→kernel→user) on our system.

6 Evaluation
This section evaluates the first fully automatic solution for

heartbeat scheduling, HBC. After describing the experimen-

tal settings, this section shows the higher performance ob-

tained by HBC compared to the clang-based OpenMP com-

piler for irregular workloads. Then, this section compares the

performance of the binaries automatically generated by HBC

against those manually generated in the TPAL work [42].

Our results suggest that the automation done by HBC to

generate binaries preserves the performance obtained by

the intense manual work done by TPAL. By leveraging our

automatic solution, this paper shows the first empirical com-

parison between two signaling mechanisms for heartbeat

scheduling: software polling and hardware interrupts. Our

results counter-intuitively show that the former is as good as

239

Compiling Loop-Based Nested Parallelism for Irregular Workloads ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

the latter, even when the latter is implemented with custom

OS support. This result has the potential to help broaden

heartbeat scheduling’s adoption as it can now be used on the

off-the-shelf Linux OS without sacrificing performance. This

section also evaluates the need for adapting the chunk size

at run-time and evaluates how well our runtime solution

performs. Finally, this section ends by comparing HBC and

OpenMP for regular workloads.

6.1 Experimental Settings
Next, we describe our test-bed, where we performed all em-

pirical evaluations described in this paper. We will open

source HBC and all benchmarks/results described in this

section.

HBC, TPAL, and OpenMP compilation. HBC builds

upon NOELLE [34], a compilation framework that augments

LLVMwith additional dependence-oriented abstractions like

the Program Dependence Graph [18]. We ported NOELLE to

LLVM 14 because the public version only supports LLVM 9.

HBC, OpenMP, and TPAL parallelize the same set of loops

for all benchmarks. All loops parallelized are DOALL.

LLVM 14 is the underlying compilation infrastructure used

for all of our results. The TPAL and OpenMP binaries are

generated using clang as included in LLVM 14. This enables

a fair comparison between the three systems as they share

a significant portion of their compilers, leaving parallelism

granularity control to be the main difference between them.

All benchmarks are compiled using -O3 -march=native
with vectorization passes disabled (as done in evaluating

TPAL [42]).

Benchmarks. We evaluated HBC on two sets of bench-

marks. Table 1 lists the benchmarks we used to evaluate HBC,

along with the input used, their regularity, and whether they

were also evaluated by TPAL.

The first set of benchmarks is composed of all the itera-

tive (eight) benchmarks that the prior work TPAL [42] was

evaluated on. As HBC aims to replace all significant manual

efforts behind the manual generation of the assemblies used

in TPAL [42], it is important to evaluate HBC against the

original benchmarks used by this prior work. To this end,

we targeted the iterative benchmarks from this prior work

since HBC targets loops and not recursive functions. In more

detail, we imported the same implementation of benchmarks

previously evaluated by TPAL [42]. We have also used the

same matrix generator implementation [41] for generating

the different inputs of the benchmark spmv.
We have also evaluated HBC on a second set of bench-

marks to further demonstrate HBC’s effectiveness in tar-

geting irregular workloads. To this end, we evaluated ten

extra benchmarks whose computations are irregular. The

rest of this subsection describes them. The first one is the

benchmark cg from the NAS benchmark suite; we used its

implementation in NPB3.0 [39]. We chose only cg from this

Benchmark Source Input Regularity

OpenMP pragmas are generated by programmers

mandelbrot

TPAL [40, 42]

512 × 1024 × 40k irregular

spmv-arrowhead 150 million rows

450 million nonzeros

irregular

spmv-powerlaw 16.7 million rows

402 million nonzeros

irregular

spmv-random 6 million rows

600 million nonzeros

regular

floyd-warshall 4k × 4k regular

kmeans 10 million elements regular

plus-reduce-array 100 billion elements regular

srad 10k × 10k regular

mandelbulb 3D Mandelbrot

[52]

100 × 200 ×
300 × 400

irregular

cg NAS [39] cage15 [50] irregular

OpenMP pragmas are automatically generated

ttv
TACO [28, 29] nell-2 [46]

irregular

ttm irregular

bfs

GraphIt [54, 55]

Twitter [30]

irregular

cc irregular

pr irregular

cf
LiveJournal [12]

irregular

pr-delta irregular

sssp irregular

Table 1. The benchmarks used in this paper, with input used,

their regularity, and if they were also evaluated by TPAL.

suite because it is the only benchmark in the NAS suite

whose input can lead to an irregular workload. In more de-

tail, we used a non-synthetic and irregular input because

most synthetic inputs of cg (including the one included in

the suite) lead to a regular workload. We used the input

cage15 [50], which is a real-world matrix from the Univerity

of Florida sparse matrix collection [12]. The second bench-

mark we targeted is mandelbulb [52], which is an extension

of mandelbrot to handle 3D inputs.

We have also evaluated eight more benchmarks from two

domains: sparse tensor computation and graph analytics

applications. We targeted these two domains because ap-

plications in these domains tend to be highly irregular due

to their computational sparsity. For the sparse tensor com-

putation, we imported TTV and TTM from TACO [29], a

domain-specific language for sparse tensor algebra. TACO

asks programmers to supply an index expression of a ten-

sor algebra kernel and specify each tensor’s storage format

(dense or sparse) in the index expression provided. This high-

level expression is compiled to C/C++ code where the main

kernel computation is a loop nest, within which all loops

are DOALL. TACO disables nested parallelism by annotating

OpenMP pragmas only on the outermost loop. We manu-

ally changed the C/C++ code generated by TACO to have

multiple versions of the same benchmark by enabling (or

disabling) parallelization of the nested loops. This enabled us

to evaluate how both an OpenMP compiler and HBC handle

nested parallelism. We used the same inputs that were used

to evaluate TACO [29]; these inputs are obtained from the

240

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Su et al.

 55.8

2.6

 12.9

32.5

3.9

 6.7

9.1

16.2

22.3

24.8

 41.2

13.4

13.4

14.2

 63.7

6.4

17.1

61.5

7.4

7.6

10.7

 31.7

37.3

41.5

 41.6

21.8

 20.1

21.7

1 10 20 30 40 50 60

geomean

sssp

pr-delta

cf

pr

cc

bfs

ttm

ttv

cg

mandelbulb

spmv-powerlaw

spmv-arrowhead

mandelbrot

OpenMP (dynamic)

HBC

Program speedup

baseline cores

Figure 4. 64-core evaluation comparing OpenMP dynamic

scheduling and HBC over irregular workloads.

FROSTT Tensor Collection [46]. We use the storage format

of dense for the first dimension of the input tensor and sparse
for the rest of the dimensions.

For graph analytics applications, we imported bfs, cc, pr,
cf, pr-delta and sssp from GraphIt [55], a domain-specific

language for writing graph analytics. GraphIt enables pro-

grammers to write high-level computation with the freedom

to apply various optimizations such as parallelization, cache

partitioning, and data layout optimizations. GraphIt compiler

transforms high-level graph computations to C/C++ code

with OpenMP pragmas. The main kernel from the above

graph analytics benchmarks is often a DOALL loop that

goes through every node of a graph and applies an update

function on outgoing neighbors of that node. We enabled

parallelization for all benchmarks and used DensePull as the
direction of applying the update function. We used social

network graphs Twitter [30] and LiveJournal [12], which

exhibit high irregularity for the input data. These graphs are

the same inputs that the authors of GraphIt have used to

evaluate their work.

Platform. All of our results are computed using an AWS

instance that runs Linux kernel 5.19.0 equipped with an Intel

Xeon Platinum 8375C processor featuring 64 cores over two

sockets running at 3.0 GHz, with 2MiB L1i, 3MiB L1d, 80MiB

L2 and 108 MiB L3. Both hyperthreading and turbo-boost are

disabled throughout the evaluation. We set the heartbeat rate

to 100 𝜇𝑠 following the tuning process proposed in TPAL [42].

We report the median result over 100 runs.

6.2 HBC Outperforms OpenMP for Irregular
Workloads

HBC binaries outperform OpenMP for all irregular work-

loads. Fig. 4 shows the speedups of these two sets of binaries

on 64 cores. The speedup (on average) increases from 14.2×
to 21.7× when switching from OpenMP to HBC. This shows

HBC’s effectiveness in generating optimized parallel binaries

that benefit from heartbeat scheduling. HBC outperforms

OpenMP by adapting the parallelism at run-time, following

81.35

75.57

99.98

93.02

34.64

100.0

99.91

99.82

98.79

99.91

99.98

94.38

18.65

24.43

33.18

6.84

63.19

66.63

0 20 40 60 80 100

sssp

pr-delta

cf

pr

cc

bfs

ttm

ttv

cg

mandelbulb

spmv-powerlaw

spmv-arrowhead

mandelbrot

Nesting level 0

Nesting level 1

Nesting level 2

Nesting level 3

Parallelism promotions generated (%)

5.62

0.19

0.02

0.14

0.0

2.17

0.09

0.0

0.09

0.18

1.21

0.09

0.02

Figure 5. Parallelism is generated at different loop nesting

levels.

the heartbeat approach. Fig. 5 shows that HBC enables the

program to generate parallelism at different loop nesting

levels upon a heartbeat. This suggests that using a static

granularity decision is sub-optimal as the best granularity

depends on the input data. This also demonstrates that the

granularity decisions can be offloaded to the compiler and

runtime, reducing the burden on programmers.

6.3 HBC Automates TPAL’s Prior Work
HBC automates the code generations and optimizations done

manually in the TPAL work [42]. Hence, it is important

to understand whether the automation performed by HBC

delivers the same binary quality that was manually obtained

by TPAL.

Fig. 6 shows the speedups of the HBC and TPAL binaries

in our testbed. HBC automatically delivers comparable
or superior performance compared to the state-of-the-
art and manually-generated code implemented using
TPAL. The TPAL-based heartbeat manual transformation

uses rollforwarding to switch between the serial version of

the code and rollforwarded code to promote parallelism. Its

runtime reserves an extra interrupt ping thread to signal

the arrival of heartbeats to all active worker threads. Similar

to our solution, TPAL inserts the promotion handler at the

end of each loop body. TPAL binaries perform chunking on

all leaf loops using a static chunk size determined with a

tuning process and defined at compile time per benchmark.

These per-benchmark manual tunings performed in TPAL’s

binaries are fully automated in HBC (on top of the code par-

allelization, generation, and optimization). Next, we discuss

in detail why HBC outperforms TPAL on some benchmarks.

HBC generates more parallelism. HBC obtains higher

speedups than TPAL for kmeans (+13.7%),mandelbrot (+24.4%)
and srad (+44.8%) because HBC runs in parallel all three tasks

generated per promotion (two loop-slice tasks and a leftover

task), while TPAL only runs two tasks in parallel, placing

the third one in its critical path. According to the authors,

this was done because running the leftover task in parallel

241

Compiling Loop-Based Nested Parallelism for Irregular Workloads ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

 51.2

 8.3

 18.8

 21.5

 16.6

 25.1

 19.4

 29.0

21.2

 63.7

6.4

17.1

 19.5

 16.6

 28.6

 20.5

 42.0

22.03

1 10 20 30 40 50 60

geomean

srad

plus-reduce-array

kmeans

floyd-warshall

spmv-random

spmv-powerlaw

spmv-arrowhead

mandelbrot

TPAL

HBC

Program speedup

baseline cores

Figure 6. HBC automatically delivers comparable perfor-

mance compared to the manually-generated TPAL binaries.

These are the loop-based benchmarks used in [42] running

on 64 cores.

would have further increased the already high time it took

them to manually generate the code. The limitation was due

to having the leftover task still referencing the execution en-

vironment (e.g., stack) of the parent task; in other words, the

leftover task in TPAL did not have a complete closure. Notice

that in the worst case, the number of possible static leftover

tasks grows quadratically with the number of nested loops;

writing all of them manually with their closure is impracti-

cal. Because HBC is fully automatic, it is able to automate

the closure generation of all possible leftover tasks, which

unlocks an extra level of parallelism. This additional level

of parallelism becomes important when the time it takes

to sequentially execute all leftover tasks is non-negligible,

which is the case for kmeans, mandelbrot and srad.

HBC is penalized for chunk size transferring. In all

spmv-based benchmarks, HBC performs worse than TPAL.

The worst is spmv-arrowhead, which shows a 22% slowdown.

This slowdown is caused by continuously tracking and up-

dating the remaining chunk size before making a poll. This

overhead is in the critical path for this input, starting from

the second row. TPAL relies on interrupts and thus does not

generate this extra overhead. The chunk size transferring

cost decreases for HBC once there are more non-zeros to be

processed per row, as shown in spmv-powerlaw (-9%) and

spmv-random (-9%).

6.4 HBC Overhead Analysis
Next, we analyze the extra work performed by the HBC bi-

naries compared to the baseline. To this end, we compile all

the loops without enabling parallelism promotion and thus

avoid the cost of task scheduling. Since now the program

runs sequentially, all extra work that the HBC binaries per-

form comes from loop outlining, closure generation, loop

chunking, promotion insertion, chunk size transferring and

polling overhead. Fig. 7 shows the overhead results and their

breakdowns.

Only spmv-arrowhead and spmv-powerlaw have signifi-

cant overhead (others have less than 10% overhead). The

extra work added by HBC for all benchmarks includes the

−10 0 10 20 30 40 50 60

srad

plus-reduce-array

kmeans

floyd-warshall

spmv-random

spmv-powerlaw

spmv-arrowhead

mandelbrot TPAL

Closure generation

HBC (interrupt-based)

Kernel module

HBC (software polling)

Loop outlining

Closure generation

Loop chunking transformation

Promotion insertion

Chunk size transferring

AC polling overhead

Overhead over baseline (%)

+5.07

+58.46

+22.14

+2.98

+9.88

+1.87

+0.01

+2.6

Figure 7. Overhead of HBC (w/ and w/o software polling)

and TPAL.

parent loop passing via memory the iteration space for the

nested loop to run. This overhead is negligible when the

invoked loop runs many iterations, which is true among all

these benchmarks. HBC inserts a promotion handler call at

the end of the body of a loop, followed by a check on the

call’s return value. This does not generate much overhead

because HBC applies chunking to all leaf loops. Hence, pro-

motion insertion overhead becomes insignificant compared

to the amount of work performed inside a chunk.

When the loop getting invoked repeatedly runs only a

small number of iterations, the overhead generated by HBC

cannot be amortized and becomes significant. This is because

for spmv-arrowhead (+58.46%) and spmv-powerlaw (+22.14%),

the binary needs to do chunk size transferring each time a

leaf loop is invoked, while only processing a few non-zero

elements. For the same reason, the overhead of promotion

insertion at the outer loop accumulates quickly when a small

leaf loop is invoked, and gets added into the critical path.

6.5 Software Polling is as Good as Hardware
Interrupts

HBC supports both software polling and hardware interrupts

for handling heartbeats. The former is the default one and

it is the mechanism used for all results shown in this paper

outside this sub-section. We first analyze the overhead of

software polling and then compare it with the interrupt-

based mechanism implemented using rollforwarding.

Software polling overhead. Software polling has the

potential to broaden the adoption of heartbeat scheduling as

it does not require any hardware or OS support. The main

problemwith software polling is its overhead.We show, how-

ever, that adding a few optimizations (e.g., loop chunking)

significantly reduces the polling overhead to the point that

software polling becomes an interesting design choice. To

show this, we start with an unoptimized implementation of

a simple algorithm for software polling, showing its high

overhead. Then, we slowly improve its quality, leading to-

wards a more and more optimized algorithm, until we reach

the final algorithm (with low overhead) described in §5.1,

which is the default implementation of HBC.

Our simplest implementation disables the loop chunking

transformation in HBC. Hence, a poll is performed at ev-

ery loop iteration. The “No chunking” bar of Fig. 8 shows

242

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Su et al.

the overhead (in clock cycles) obtained by this simple im-

plementation compared to the same baseline of Fig. 6. This

is computed by running the generated code without doing

promotions; hence, the execution stays sequential even if we

perform the polls. The overhead is significant and completely

erases the benefits of parallelism, causing a 7.5x slowdown.

Our second implementation adds loop chunking using

static chunk sizes used in TPAL [42]. Hence, a poll is per-

formed per chunk. The bar “Static chunking” of Fig. 8 shows

that the overhead of this algorithm is significantly lower.

Finally, we measured the overhead of polling generated

by the algorithm described in §5.1 where the chunk size

is decided by our runtime. This is the bar called “Adaptive

Chunking” of Fig. 8. This low overhead led to the speedups

shown in Fig. 6.

0.0

3.8

0.0

2.4
1.9

9.3

4.1

0.5
0.1

2.4

0.0

0.8 0.6 0.5 0.3 0.2 0.0 0.2

mandelbrot

spmv-arro
whead

spmv-powerla
w

spmv-ra
ndom

floyd-w
arshall

kmeans

plus-re
duce-arra

y
srad

0

2

4

6

8

10
No chunking

Static chunking

Adaptive Chunking

O
v
e
r
h
e
a
d
 (

%
)

360.0 325.9 377.0 748.0 550.1 137.5

Figure 8. Software polling overhead with different chunking
mechanisms. Both static and adaptive chunking significantly

reduce overhead, with adaptive performing best.

Software polling and interrupt-based solutions are
comparable. Prior work on heartbeat scheduling relied on

hardware interrupts. HBC implements this solution as well

as software polling, so for the first time, these techniques

can be compared within the context of heartbeat scheduling.

TPAL work relies on a dedicated thread to send heartbeat

interrupts to worker threads. HBC is the first compiler that

automated the code generation needed by this technique (§4).

To measure the efficiency of this solution, we used a user-

space thread to send heartbeat interrupts as done by prior

work [42]. Results obtained with this technique are shown by

the bar "Interrupts (ping thread)" of Fig. 9. This figure shows

that software polling boosts the speedup obtained by this

prior work technique from 17.7× to 22.0×. This is because of
the high signaling overheads created by the interrupt ping

thread, making it unable to deliver heartbeats at a rate that

matches the desired one. This results in missing up to 45%

of the heartbeats (and therefore generating less parallelism).

Because of this high overhead, we have implemented a

custom OS support to reduce the latency of delivering heart-

beats (§5.2). This is the bar "Interrupts (kernel module)" of

Fig. 9. While this new implementation is better than the

one adopted by prior work, its performance is still compati-

ble to that of software polling. This suggests that heartbeat

scheduling can be embedded in programs without special

OS support, increasing adaptability.

 51.2

 5.7

 14.7

 17.2

 11.3

 24.3

 17.1

 28.0

17.71

 63.2

 6.5

 17.2

 19.3

 16.8

 28.5

 20.2

 40.9

21.95

 63.7

 6.4

 17.1

 19.5

 16.6

 28.6

 20.5

 42.0

22.03

1 10 20 30 40 50 60

geomean

srad

plus-reduce-array

kmeans

floyd-warshall

spmv-random

spmv-powerlaw

spmv-arrowhead

mandelbrot

Interrupts (ping thread)

Interrupts (kernel module)

Software polling

Program speedup

baseline cores

Figure 9. Software polling is as good as interrupt-based

mechanisms.

Why is software polling comparable? To understand

why software polling is comparable to the interrupt-based

solution adopted in prior work, we compared the overhead

of these two techniques. Fig. 7 shows such a comparison

where promotion is disabled for both techniques; hence, the

promotion cost and task scheduling cost are not included in

the overhead.

Software polling pays (on average) less overhead than

the best interrupt-based technique (the one with custom

OS support). This is because the overhead for the latter per

heartbeat is almost two orders of magnitude compared to a

single poll. For each heartbeat, it can take 3800 cycles (§5.2).

Instead, by our measurement, a poll takes 50 cycles. Ideally,

a single poll per heartbeat is enough for the software polling

technique. Even when 10 polls are performed per heartbeat,

the total cost is still an order of magnitude less than the cost

of an interrupt.

6.6 Chunking Needs to be Adapted at Runtime
The best chunk size is input-dependent and therefore it needs

to be adapted at run-time. Next we are going to use mandel-
brot as an example of code that highlights this need.

The need for adapting. Fig. 10 shows the execution time

of mandelbrot using heartbeat scheduling on 64 cores with

two different inputs, one with high latency (input 1) and

the other with low latency (input 2). As we increase the

static chunk size used from 2
0
to 2

9
, input 2 performs better

while input 1 performs worse. Therefore, the best chunk size

1 2 4 8 16 32 64 128 256 512 1024

0

5

10

15

20
Input 1 (high latency)

Input 2 (low latency)

Static chunk sizes

P
r
o
g
r
a
m

 r
u
n
 t

im
e
 (

s
)

For input 1,

 the best chunk size is 1...

...but for input 2,

 the best chunk size is 1024.

Figure 10. Optimal chunk size for mandelbrot is input-

dependent.

243

Compiling Loop-Based Nested Parallelism for Irregular Workloads ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

13.6

16.83

16.91

13.28

14.97

10.14

9.0

7.5

6.74

6.75

28.0

1 5 10 15 20 25

512

256

128

64

32

16

8

4

2

1

Program speedup

S
t
a
t
ic

 c
h
u
n
k
 s

iz
e
s

w/ AC

Figure 11. Speedup of invokingmandelbrot 10 timeswith dif-

ferent inputs, using static chunk size versus adapting chunk

size at run-time.

setting for mandelbrot is input-dependent, and there is no

single chunk size setting that is optimal across all inputs.

A common scenario in many applications is that an impor-

tant loop gets invoked repeatedly and possibly with different

inputs. To further show the limitations of setting the chunk

size statically, we studied mandelbrot in this scenario by in-

voking its main loop 10 times, using input 1 and 2 five times

each. We measured the time it takes to sequentially run these

invocations (compiling the code with clang) and we consider

this time to be the baseline for this experiment. The speedup

obtained by HBC forcing a static chunk size or by adapting

it at run-time are shown in Fig. 11. Adapting the chunk size

at run-time boosts the speedup from 17× (static chunk size

set to 2) to 28×, an increase of 64%.

The benchmark mandelbrot is just an example that shows

the need for adapting the chunk size at run-time. To show

this, let us now observe spmv with different matrix inputs

and use the number of non-zeros per row to show the im-

pact of having different latencies per loop iteration. AC is

included in our HBC solution and is needed when there are

different latencies between loop iterations. This is because

the code needs to perform the right amount of polls to mini-

mize their overhead while avoiding missing heartbeats. The

higher the latencies, the smaller the chunk size needs to be.

Fig. 12 shows how the chunk size changes in reaction to loop

iteration latency.

1

10

100

1000

10k

0

100

200

300

400

1

10

100

1000

10k

0

100

200

300

400

N
o
n
z
e
r
o
s

C
h
u
n
k
 s

iz
e

N
o
n
z
e
r
o
s

C
h
u
n
k
 s

iz
e

arrowhead

powerlaw powerlaw-reverse

random

Figure 12. Visualization of Adaptive Chunking.

Adapting chunk size requires the right target. To adapt
the chunk size of a loop, our runtime implements a sliding

window algorithm (§5.1), controlled by two parameters: tar-

get polling count and window size. All HBC results shown

50

60

70

80

90

100

0 5 10 15 20

0

10

mandelbrot

spmv-arrowhead

spmv-powerlaw

spmv-random

floyd-warshall

kmeans

plus-reduce-array

srad

Target polling count

4

H
e
a
r
t
b
e
a
t
 d

e
t
e
c
t
io

n
 r

a
t
e
 (

%
)

Figure 13. Heartbeat detection rate via AC. A target polling

count value of 4 is efficient in capturing almost all heartbeats.

in this paper use 8 for both the target polling count and the

window size for all loops in all benchmarks, which we will

justify next.

Target polling count. Our primary goal is to avoid miss-

ing heartbeats while minimizing polling overhead, thus we

compare how many heartbeats are detected to the total num-

ber of heartbeats generated. We perform this experiment at

different target polling ratios. Our results in Fig. 13 show

that a too-low target polling count results in missing a signif-

icant number of heartbeats (almost 50% for spmv-powerlaw),
which leads to less parallelism. On the other hand, having

a too-high target polling count results in extreme polling

overhead. Setting this value to 4 captures over 99% of the

heartbeats while paying a small overhead. Similar results are

obtained for other benchmarks. Hence, we used the target

count 4 for all loops in all benchmarks for every result shown

in this paper.

Window size. Theoretically, this parameter could impact

the reaction speed of changing the chunk size at run-time to

changes of the latency of loop iterations. In practice, our re-

sults show negligible impact for this parameter on all bench-

marks used. Hence, we used window size 8 (anything ≥ 2

would have worked fine) for all results shown in this paper.

6.7 Manual Granularity Control for OpenMP
Compilers

All OpenMP-related results described in prior sub-sections

are obtained by parallelizing only the outermost loops of a

benchmark (and by using the default chunk size for each

parallel loop, which is one). This is recommended as a good

practice to control the scheduling overhead. However, if an

OpenMP compiler can perform granularity control automat-

ically (like HBC), then a better solution for programmers is

to expose the parallelism of all DOALL loops of a benchmark

without worrying about the scheduling overhead. This is

what we did when we used HBC in the prior sub-sections.

OpenMP compilers rely on the programmer to make gran-

ularity control decisions such as determining which loops

to parallelize and specifying the chunk size of a loop being

parallelized. To show that the decisions that OpenMP pro-

grammers of our target benchmarks are reasonable, this sub-

section performs the following experiments. We changed

244

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Su et al.

 55.8

2.6

 12.9

32.5

3.9

 49.5

2.5

 13.2

32.6

4.0

 41.2

2.3

 12.1

16.3

4.4

 29.9

2.3

9.0

9.4

4.4

 15.3

2.3

 6.1

5.5

4.5

8.0

2.3

4.3

3.0

4.3

0 10 20 30 40 50 60

cg

mandelbulb

spmv-powerlaw

spmv-arrowhead

mandelbrot

 OpenMP (dynamic) chunk size

1 (default) 2 4 8 16 32

Program speedup

baseline cores

Figure 14. 64-core evaluation of OpenMP dynamic schedul-

ing using varying chunk sizes. Only the outermost loop is

parallelized.

(manually) the selection of which loops to parallelize as well

as their chunk size while using the OpenMP compiler to see

if these changes can improve performance. We performed

these experiments on all manually implemented benchmarks,

where programmers have the full control over where and

how OpenMP pragmas are generated. Our results show that

both tuning the chunk size and parallelizing all DOALL loops

(instead of parallelizing only the outermost loops) degrade

the performance.

Tuning the chunk size. OpenMP programmers can man-

ually perform granularity control of the parallelism of their

code by changing the chunk size of a parallel loop. While tun-

ing the chunk size for performance is often input-dependent

and labor-intensive (and therefore not ideal), it is important

to know how much performance can be gained by it (to un-

derstand how well the default chunk size performs). To this

end, we run a sensitivity analysis over the chunk size of the

OpenMP dynamic scheduler for all manually implemented

benchmarks. As shown in Fig. 14, all benchmarks get their

performance degraded when keep increasing the chunk size

except for one benchmark, cg, whose performance is slightly

improved. The worse performance is because when tasks get

coarsened, chunking results in less balanced execution for

irregular workloads.

Parallelizing all DOALL loops. The OpenMP results

described in prior sub-sections have been obtained by paral-

lelizing only the loops that the original author of the bench-

marks has parallelized (which is only the outermost DOALL

loops). However, some nested loops of the target benchmarks

could be parallelized as DOALL as well. Enabling their par-

allelism (by adding more OpenMP pragmas) leads to finer-

grained parallelism. To understand how OpenMP compilers

handle more (fine-grained) parallelism, we ran an experi-

ment where we exposed fork-join parallelism for all DOALL

loops (as we did for HBC) for all manually implemented

OpenMP benchmarks. This is achieved by explicitly invok-

ing omp_set_max_active_levels routine at the beginning

55.8

2.6

12.9

32.5

3.9

1.5

 DNF

 DNF

 DNF

3.6

0 10 20 30 40 50 60

cg

mandelbulb

spmv-powerlaw

spmv-arrowhead

mandelbrot

outermost DOALL loop only

all DOALL loops

Program speedup

baseline cores

Figure 15. 64-core evaluation of OpenMP dynamic sched-

uling (using default chunk size) parallelizing the outermost

loop only versus all DOALL loops. DNF means the program

did not finish within the allowed time frame (2 hours) or

crashes.

of the code and tagging all DOALL loops with OpenMP prag-

mas (using the dynamic scheduler and its default chunk size)
of all loop nests. As shown in Fig. 15, all benchmarks, except

for cg, have their performance significantly degraded when

all DOALL loops are parallelized. spmv-arrowhead and spmv-
powerlaw did not finish in time (2 hours).mandelbulb crashed
because the OpenMP runtime failed to allocate necessary

resources for 64 workers. The performance degradation is be-

cause enabling nested parallelism by parallelizing all DOALL

loops in OpenMP generates too many tasks, which overloads

the system and wipes out the benefit of parallelism.

6.8 When Heartbeat Scheduling is Inefficient
We compared HBC and OpenMP for regular benchmarks to

understand whether heartbeat scheduling can become the

solo policy. HBC performs worse than OpenMP in this case,

as shown in Fig. 16, because heartbeat scheduling incurs

extra overhead that is not justified for workloads that have

well-balanced loop iterations. The only exception is kmeans,
which HBC outperforms OpenMP static scheduler by more

than 50%. HBC obtains this performance gain because it

is able to reduce an array of elements between all tasks in

parallel. Instead, the OpenMP implementation performs the

reduction operation over an array sequentially by the main

thread, and this adds to the critical path of the computation.

We used the unmodified OpenMP implementation kmeans
from the Rodinia benchmark suite [10], which is the same

implementation used by TPAL [42].

The static policy outperforms all dynamic policies (in-

cluding heartbeat) for most regular benchmarks we studied.

This is because a static decision about how to parallelize

 19.1

 27.9

 18.6

 18.9

 45.9

24.37

 19.5

 16.6

 28.6

 20.5

 42.0

24.0

1 10 20 30 40 50 60

geomean

srad

plus-reduce-array

kmeans

floyd-warshall

spmv-random
OpenMP (static)

HBC

Program speedup

baseline cores

Figure 16. 64-core evaluation comparing OpenMP static

scheduling and HBC over regular workloads.

245

Compiling Loop-Based Nested Parallelism for Irregular Workloads ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

the code generates minimal run-time overhead. Therefore,

an ideal compiler should include both heartbeat and static

scheduling.

7 Related work
Lazy scheduling and clone optimization. Lazy sched-

uling (LS) dates back to the proposal for lazy task creation

of Mohr et al. [35], and was later adapted to the specifics of

the work-stealing scheduler [20], resulting in the clone opti-
mization. Our HBC runtime uses the clone optimization to

avoid paying synchronization costs (e.g., the execution cost

of atomic instructions) between tasks that are executed by

the same thread. For HBC, in more detail, when a heartbeat

happens at time 𝑡 , while a task 𝑘 is executing, 𝑘 splits into

three tasks that cumulatively perform the same computation

that 𝑘 still had to do to complete at time 𝑡 . These three tasks

execute in parallel and the continuation of 𝑘 (the code to

execute after 𝑘 ends) can execute only when all three tasks

end, which requires the three tasks to synchronize. However,

when the three tasks are executed by the same thread that

was executing 𝑘 , they will execute sequentially and in the

right order (thanks to the thread-local deque). In this case

(the fast path), our runtime avoids performing the synchro-

nization. However, if one of these three tasks is stolen by

another thread and therefore it will execute on another core,

then our runtime performs the necessary synchronization

(the slow path).

Other instantiations of LS include backtracking-based load

balancing [24] for recursive programs, library-based imple-

mentations of work stealing [17, 53], and lazy binary split-

ting [47, 49] for parallel loops.

Granularity control. A classic alternative to LS and heart-

beat scheduling is granularity control (GC), a family of ap-

proaches that operate in a proactive manner to amortize

task overheads. Like with LS, in GC, the program switches

between serial and parallel modes of execution. However,

switching in GC is guided by predicted amounts of future of
work (LS and heartbeat scheduling are guided by measured
amounts of past work). Manual granularity control [27] re-

mains commonplace in spite of its limitations [47]; there

have also been various proposals for automatic granularity

control [15, 26, 32, 38, 44, 51]. Oracle-guided GC [2, 3] is

the first to be backed by formal guarantees that bound task-

related overheads and guarantee preservation of parallelism.

However, these bounds require certain assumptions on the

dynamic behavior of the program, which may be difficult

to know in general, and the approach is not fully automatic.

In particular, it requires application programmers to write

annotations at fork points in the program that specify ab-
stract cost functions, which require manual effort and are

sometimes not practical.

Prior work has performed granularity control applied to

a single program to dynamically adapt on changes to the

hardware resources available while the parallel program ex-

ecutes (e.g., due to having multiple programs running on the

same machine at the same time) [9, 16, 25, 45]. Compared to

heartbeat scheduling, these approaches react to change in

available resources rather than changes of available paral-

lelism of the target program.

Compiler support for parallelism. Tapir [43] is a recent
proposal to embed fork-join parallelism into the LLVM IR.

The motivation is to unlock conventional middle-end opti-

mizations (i.e., optimizations that target LLVM IR code) in

LLVM to work within parallel constructs (e.g., loop invariant

code motion across parallel loops). These optimizations are

otherwise only applicable to serial regions of programs. Al-

though our HBC extends the LLVM IR, our focus is to enable

granularity control rather than to unlock existing optimiza-

tions of LLVM’s middle end. Finally, notice that HBC can be

extended to target TAPIR rather than LLVM IR. HBC and

Tapir should compose well.

8 Conclusion
Obtaining efficient parallel execution still requires program-

mers to manually control the parallelism granularity of their

programs. This leads to either platform-specific and hard-

to-maintain codebases or inefficient programs. Heartbeat

scheduling can solve this problem, but it requires the soft-

ware to fit to an unconventional structure. This paper intro-

duces HBC, the first compiler that automatically transforms

C/C++ programs with nested fork-join constructs into such

unconventional structure, unlocking heartbeat scheduling

for a wide programmer base. HBC outperforms the clang-

based OpenMP compiler for irregular workloads, where even

programmers (not tools) struggle to optimize.

Acknowledgements
We thankmembers of the ARCANALab for their support and

feedback on this work. We also thank the anonymous review-

ers for their insightful comments and feedback, which made

this work stronger, and especially Jean-Pierre Lozi, who sig-

nificantly helped finalize the writing of this paper. This ef-

fort is based upon work supported by the U.S. Department

of Energy under contract number DE-SC0022268. It is also

based upon work supported by the National Science Founda-

tion under Grants CCF-1901381, CCF-2107241, CCF-2115104,

NSF-2119069, CCF-2119352, NSF-2107042, NSF-2028851, and

NSF-1908488, and via the Exascale Computing Project (17-

SC-20-SC), a collaborative effort of the U.S. Department of

Energy Office of Science and the National Nuclear Security

Administration, by the U.S. Department of Energy, Office of

Science, under Contract DE-AC02-06CH11357.

246

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Su et al.

A Artifact Appendix
A.1 Abstract
Our artifact includes the source files for the heartbeat com-

piler (HBC), which is described in the paper. This artifact

also includes the source code for all benchmarks evaluated in

the paper. Furthermore, it includes the automated workflow

to set up and run all experiments after building/running the

Docker image/container. The output of this artifact gener-

ates all evaluation figures included in the paper, plus the raw

results needed to generate the figures. The artifact also pro-

vides a README file detailing the steps to follow to extend it

to evaluate new benchmarks or to customize the evaluation

of a benchmark (e.g., by changing how many runs to execute

per benchmark).

A.2 Artifact check-list (meta-information)
• Algorithm: Heartbeat Compiler (HBC)
• Program: All iterative loop-based benchmarks evalu-
ated by TPAL. cg from NAS benchmark suite. A new
benchmarkmandelbulb. Two benchmarks from TACO
and six fromGraphIt. The implementations of all bench-
marks are available within this artifact.
• Compilation: LLVM 14.0.6. The Dockerfile handles the
installation of this dependency.
• Transformations: NOELLE transformations are used in
the compilation flow of HBC. NOELLE is not included
in this artifact but is downloaded and built during the
setup stage.
• Data set: The artifact uses data (a total of 40 GB) from
various sources (see §A.3.4 for full detailed descrip-
tions). All data will get downloaded during the setup
stage.
• Run-time environment: Linux
• Hardware: Intel x86_64 CPU
• Metrics: Benchmark execution time
• Output: All experimental results and evaluation fig-
ures from Figure 4 to Figure 16. The artifact also in-
cludes results and figures from various systems, in-
cluding the AWS machine used in the paper.
• Experiments: Setting up the artifact and running ex-
periments both use automated workflow.
• How much disk space required (approximately)?: 80
GB
• How much time is needed to prepare workflow (ap-
proximately)?: 30 minutes
• How much time is needed to complete experiments
(approximately)?: 10 hours (using the default configu-
ration
• Publicly available?: Yes
• Code licenses (if publicly available)?: MIT License
• Workflow framework used?: Docker, Unix Makefiles,
and Bash
• Archived?: https://doi.org/10.5281/zenodo.10551774

A.3 Description
A.3.1 How to access. The artifact can be accessed and

downloaded from Zenodo, at https://doi.org/10.5281/zenodo.
10551774.

A.3.2 Hardware dependencies. 32+ physical cores x86_64
CPU and 16+ GB RAM. This artifact has been tested on Intel

processors, including Intel Xeon Gold 6258R and Intel Xeon

E5-2695 v3 processors.

A.3.3 Software dependencies. Running the artifact re-
quires LLVM 14.0.6. The dependency is handled when build-

ing with the Docker image. This artifact has been tested on

Docker 24.0.5.

A.3.4 Data sets. The artifact uses the following data sets:

• cage15 matrix (2.5 GB) from the SuiteSparse Matrix

Collection.

• NELL-2 tensor (1.5 GB) from the Formidable Reposi-

tory of Open Sparse Tensors and Tools (FROSTT).

• Twitter (25 GB) and LiveJournal (1.1 GB) graphs from

the Stanford Network Analysis Project (SNAP).

All data are not included in the artifact but will get down-

loaded at the setup stage.

A.4 Installation
Please run the artifact inside a Docker container. A Docker-

file is provided to handle the installation of all dependencies.

First, please download and extract the artifact. Then, from

within the artifact, run the following commands:

docker build -t asplos24ae .
docker run –privileged -it asplos24ae
cd hbc-asplos24-artifact && make setup

To verify the artifact is set up correctly, run the following

command:

make test
If you see the text "The artifact sets up correctly, and all tests

passed!", then the installation phase is complete.

A.5 Experiment workflow
The artifact includes a fully automatic workflow to generate

all experimental results included in the paper. The workflow

runs HBC to compile all benchmarks evaluated in the paper.

Then, the generated binaries are invoked to generate the

raw results (e.g., the execution times of multiple runs of a

benchmark). Then, these raw results are used to generate

the figures included in the paper.

The paper includes multiple experiments that test different

configurations of HBC. Therefore, the workflow included

in this artifact invokes HBC with different configurations

depending on the target figure/experiment.

A.6 Evaluation and expected results
After installing the artifact and passing all tests, please run

247

https://doi.org/10.5281/zenodo.10551774
https://doi.org/10.5281/zenodo.10551774
https://doi.org/10.5281/zenodo.10551774

Compiling Loop-Based Nested Parallelism for Irregular Workloads ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

make
The plots/current_machine directory will be populated

with the figures as the output of the experiment workflow.

The raw results used to feed all figures can be found under

results/current_machine directory.
Figure 4 (fig4.pdf) evaluates HBC against an OpenMP

compiler (dynamic schedule) on all irregular benchmarks.

Figure 5 (fig5.pdf) plots the statistics about the nesting
levels of the loops that get parallelized.

Figure 6 (fig6.pdf) evaluates HBC against the prior

work TPAL for all iterative-based loop benchmarks.

Figure 7 (fig7.pdf) plots the breakdown of the overhead

of the binaries generated by HBC.

Figure 8 (fig8.pdf) plots the polling overhead using

HBC between three different polling mechanisms.

Figure 9 (fig9.pdf) evaluates HBC using different heart-

beat signal mechanisms.

Figure 10 (fig10.pdf) plots the execution time of man-

delbrot over two different inputs with varying chunk sizes.

Figure 11 (fig11.pdf) plots the program speedup of ten

invocations of mandelbrot using static chunk sizes against

adaptive chunking.

Figure 12 (fig12.pdf) visualizes adaptive chunking.
Figure 13 (fig13.pdf) plots the heartbeat detection rate

using adaptive chunking varying target polling count.

Figure 14 (fig14.pdf) evaluates the OpenMP implemen-

tation varying chunk sizes on all irregular benchmarks.

Figure 15 (fig15.pdf) evaluates the OpenMP implemen-

tation between parallelizing the outermost loop versus par-

allelizing all DOALL loops on all irregular benchmarks.

Figure 16 (fig16.pdf) evaluates HBC against the clang

OpenMP compiler (static schedule) on all regular bench-

marks.

A.7 Experiment customization
The artifact can be configured during the setup stage. The

configurable options are as follows:

• number of runs: specifies how many times to run

the experiment per benchmark. The default value is 3.

• number of workers: specifies the number of threads

to use when the generated binaries are evaluated on

multiple cores. The default value is the number of

physical cores detected on the underlying machine.

• heartbeat rate: controls how frequent an heartbeat is

generated. The default value is 100 microseconds.

The artifact can also be configured to evaluate new bench-

marks that were not included in the paper. To this end, we

ask you to modify your program into a form that can be

recognized by HBC. This is needed to declare to HBC which

loops are DOALL. More information about this can be found

in the Section "Extend to evaluate new benchmarks"
within the README file of the artifact.

A.8 Notes
We assume you have an internet connection during the setup

stage of this artifact to download all necessary data and ex-

ternal libraries. This artifact does not handle the installation

of the Linux kernel module for delivering heartbeats. This

artifact does not include the Linux kernel module for deliv-

ering heartbeats and its corresponding workflows. For more

details on how to build and load the kernel module, please

reference the README file.

A.9 Methodology
Submission, reviewing and badging methodology:

• https://www.acm.org/publications/policies/artifact-review-
badging
• http://cTuning.org/ae/submission-20201122.html
• http://cTuning.org/ae/reviewing-20201122.html

248

https://www.acm.org/publications/policies/artifact-review-badging
https://www.acm.org/publications/policies/artifact-review-badging
http://cTuning.org/ae/submission-20201122.html
http://cTuning.org/ae/reviewing-20201122.html

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Su et al.

References
[1] Umut A. Acar, Arthur Charguéraud, Adrien Guatto, Mike Rainey, and

Filip Sieczkowski. Heartbeat scheduling: Provable efficiency for nested

parallelism. In Proceedings of the 39th ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI 2018, pages
769–782, 2018.

[2] Umut A. Acar, Arthur Charguéraud, and Mike Rainey. Oracle sched-

uling: Controlling granularity in implicitly parallel languages. In

ACM SIGPLAN Conference on Object-Oriented Programming, Systems,
Languages, and Applications (OOPSLA), pages 499–518, 2011.

[3] Umut A. Acar, Arthur Charguéraud, and Mike Rainey. Oracle-guided

scheduling for controlling granularity in implicitly parallel languages.

Journal of Functional Programming (JFP), 26:e23, 2016.
[4] V Aho Alfred, S Lam Monica, and D Ullman Jeffrey. Compilers princi-

ples, techniques & tools, 2007.

[5] Sotiris Apostolakis, Ziyang Xu, Greg Chan, Simone Campanoni, and

David I. August. Perspective: A sensible approach to speculative auto-

matic parallelization. In Proceedings of the Twenty-Fifth International
Conference on Architectural Support for Programming Languages and
Operating Systems, ASPLOS ’20, page 351–367, New York, NY, USA,

2020. Association for Computing Machinery.

[6] Simone Campanoni, Kevin Brownell, Svilen Kanev, Timothy M. Jones,

Gu-YeonWei, and David Brooks. HELIX-RC: An architecture-compiler

co-design for automatic parallelization of irregular programs. In Pro-
ceeding of the 41st Annual International Symposium on Computer Ar-
chitecuture, ISCA ’14, pages 217–228, Piscataway, NJ, USA, 2014. IEEE

Press.

[7] Simone Campanoni, Glenn Holloway, Gu-YeonWei, and David Brooks.

HELIX-UP: Relaxing program semantics to unleash parallelization. In

Proceedings of the 13th Annual IEEE/ACM International Symposium on
Code Generation and Optimization, CGO ’15, pages 235–245, Washing-

ton, DC, USA, 2015. IEEE Computer Society.

[8] Simone Campanoni, Timothy Jones, Glenn Holloway, Vijay Janapa

Reddi, Gu-Yeon Wei, and David Brooks. HELIX: Automatic paralleliza-

tion of irregular programs for chip multiprocessing. In Proceedings of
the Tenth International Symposium on Code Generation and Optimiza-
tion, CGO ’12, pages 84–93, New York, NY, USA, 2012. ACM.

[9] Simone Campanoni, Timothy Jones, Glenn Holloway, Gu. Y. Wei, and

David Brooks. The helix project: Overview and directions. In DAC
Design Automation Conference 2012, pages 277–282, June 2012.

[10] Shuai Che, Michael Boyer, Jiayuan Meng, David Tarjan, Jeremy W.

Sheaffer, Sang-Ha Lee, and Kevin Skadron. Rodinia: A benchmark

suite for heterogeneous computing. In Proceedings of the 2009 IEEE
International Symposium on Workload Characterization (IISWC), IISWC

’09, page 44–54, USA, 2009. IEEE Computer Society.

[11] Ding-Kai Chen, Hong-Men Su, and Pen-Chung Yew. The impact of

synchronization and granularity on parallel systems. ACM SIGARCH
Computer Architecture News, 18(2SI):239–248, 1990.

[12] Timothy A. Davis and Yifan Hu. The university of florida sparse matrix

collection. ACM Trans. Math. Softw., 38(1), dec 2011.
[13] SK Debray, Manuel V Hermenegildo, and Pedro López García. A

methodology for granularity-based control of parallelism in logic pro-

grams. Journal of symbolic computation, 21(4-6):715–734, 1996.
[14] Enrico A. Deiana, Vincent St-Amour, Peter A. Dinda, Nikos Hardavel-

las, and Simone Campanoni. Unconventional parallelization of nonde-

terministic applications. In Proceedings of the Twenty-Third Interna-
tional Conference on Architectural Support for Programming Languages
and Operating Systems, ASPLOS ’18, pages 432–447, New York, NY,

USA, 2018. ACM.

[15] A. Duran, J. Corbalan, and E. Ayguade. An adaptive cut-off for task

parallelism. In 2008 SC - International Conference for High Performance
Computing, Networking, Storage and Analysis, pages 1–11, 2008.

[16] Murali Krishna Emani, Zheng Wang, and Michael F. P. O’Boyle. Smart,

adaptive mapping of parallelism in the presence of external workload.

In Proceedings of the 2013 IEEE/ACM International Symposium on Code
Generation and Optimization (CGO), pages 1–10, 2013.

[17] Karl-Filip Faxén. Wool-a work stealing library. SIGARCH Comput.
Archit. News, 36(5):93–100, June 2009.

[18] Jeanne Ferrante, Karl J. Ottenstein, and Joe D. Warren. The program

dependence graph and its use in optimization. ACM Trans. Program.
Lang. Syst., 9(3):319–349, jul 1987.

[19] Elias Frantar and Dan Alistarh. Sparsegpt: Massive language models

can be accurately pruned in one-shot. 2023.

[20] Matteo Frigo, Charles E. Leiserson, and Keith H. Randall. The im-

plementation of the Cilk-5 multithreaded language. In PLDI, pages
212–223, 1998.

[21] Souradip Ghosh, Michael Cuevas, Simone Campanoni, and Peter Dinda.

Compiler-based timing for extremely fine-grain preemptive paral-

lelism. In Proceedings of the International Conference for High Per-
formance Computing, Networking, Storage and Analysis, SC ’20. IEEE

Press, 2020.

[22] Milind Girkar and Constantine D Polychronopoulos. Automatic ex-

traction of functional parallelism from ordinary programs. IEEE trans-
actions on parallel and distributed systems, 3(2):166–178, 1992.

[23] Kyle C. Hale, Conor Hetland, and Peter A. Dinda. Automatic hybridiza-

tion of runtime systems. In Proceedings of the 25th ACM International
Symposium on High-Performance Parallel and Distributed Computing,
HPDC ’16, page 137–140, New York, NY, USA, 2016. Association for

Computing Machinery.

[24] Tasuku Hiraishi, Masahiro Yasugi, Seiji Umatani, and Taiichi Yuasa.

Backtracking-based load balancing. Proceedings of the 2009 ACM SIG-
PLAN Symposium on Principles & Practice of Parallel Programming,
44(4):55–64, February 2009.

[25] Henry Hoffmann, Stelios Sidiroglou, Michael Carbin, Sasa Misailovic,

Anant Agarwal, and Martin Rinard. Dynamic knobs for responsive

power-aware computing. ACM SIGARCH computer architecture news,
39(1):199–212, 2011.

[26] Lorenz Huelsbergen, James R. Larus, and Alexander Aiken. Using

the run-time sizes of data structures to guide parallel-thread creation.

In Proceedings of the 1994 ACM Conference on LISP and Functional
Programming, LFP ’94, pages 79–90, 1994.

[27] Intel. Intel threading building blocks, 2011. https://www.
threadingbuildingblocks.org/.

[28] Fredrik Kjolstad. Taco github, 2017. https://github.com/tensor-
compiler/taco.

[29] Fredrik Kjolstad, Shoaib Kamil, Stephen Chou, David Lugato, and

Saman Amarasinghe. The tensor algebra compiler. Proceedings of the
ACM on Programming Languages, 1(OOPSLA):1–29, 2017.

[30] Haewoon Kwak, Changhyun Lee, Hosung Park, and Sue Moon. What

is twitter, a social network or a news media? In Proceedings of the 19th
International Conference on World Wide Web, WWW ’10, page 591–600,

New York, NY, USA, 2010. Association for Computing Machinery.

[31] Viktor Leis, Kan Kundhikanjana, Alfons Kemper, and Thomas Neu-

mann. Efficient processing of window functions in analytical sql

queries. volume 8, page 1058–1069. VLDB Endowment, jun 2015.

[32] Hans-Wolfgang Loidl and Kevin Hammond. On the granularity of

divide-and-conquer parallelism. In Proceedings of the 1995 Glasgow
Workshop on Functional Programming, pages 1–10, 1995.

[33] Jiacheng Ma, Wenyi Wang, Aaron Nelson, Michael Cuevas, Brian

Homerding, Conghao Liu, Zhen Huang, Simone Campanoni, Kyle C.

Hale, and Peter A. Dinda. Paths to openmp in the kernel. In Bronis R.

de Supinski, Mary W. Hall, and Todd Gamblin, editors, SC ’21: The
International Conference for High Performance Computing, Networking,
Storage and Analysis, St. Louis, Missouri, USA, November 14 - 19, 2021,
pages 65:1–65:17. ACM, 2021.

[34] Angelo Matni, Enrico Armenio Deiana, Yian Su, Lukas Gross, Souradip

Ghosh, Sotiris Apostolakis, Ziyang Xu, Zujun Tan, Ishita Chaturvedi,

David I. August, and Simone Campanoni. NOELLE Offers Empowering

LLvm Extensions. In International Symposium on Code Generation and

249

https://www.threadingbuildingblocks.org/
https://www.threadingbuildingblocks.org/
https://github.com/tensor-compiler/taco
https://github.com/tensor-compiler/taco

Compiling Loop-Based Nested Parallelism for Irregular Workloads ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

Optimization, 2022. CGO 2022., 2022.
[35] Eric Mohr, David A. Kranz, and Robert H. Halstead Jr. Lazy task cre-

ation: a technique for increasing the granularity of parallel programs.

In Conference record of the 1990 ACM Conference on Lisp and Functional
Programming, pages 185–197, New York, New York, USA, June 1990.

ACM Press.

[36] David Mosberger, Peter Druschel, and Larry L Peterson. Implement-

ing atomic sequences on uniprocessors using rollforward. Software:
Practice and Experience, 26(1):1–23, 1996.

[37] Niall Murphy, Timothy Jones, Robert Mullins, and Simone Campanoni.

Performance implications of transient loop-carried data dependences

in automatically parallelized loops. In Proceedings of the 25th Inter-
national Conference on Compiler Construction, CC 2016, pages 23–33,

New York, NY, USA, 2016. ACM.

[38] Joseph Pehoushek and JosephWeening. Low-cost process creation and

dynamic partitioning in Qlisp. In Takayasu Ito and Robert Halstead,

editors, Parallel Lisp: Languages and Systems, volume 441 of Lecture
Notes in Computer Science, pages 182–199. Springer Berlin / Heidelberg,
1990.

[39] Omni Compiler Project. Nas-c-openmp3.0, 2014. https://benchmark-
subsetting.github.io/cNPB/.

[40] Mike Rainey. Tpal github, 2021. https://github.com/mikerainey/tpal/
tree/master.

[41] Mike Rainey. Tpal matrix generator, 2021. https://github.com/
mikerainey/tpal/blob/master/runtime/bench/spmv.hpp#L659.

[42] Mike Rainey, Kyle Hale, Ryan R. Newton, Nikos Hardavellas, Simone

Campanoni, Peter Dinda, and Umut A. Acar. Task parallel assem-

bly language for uncompromising parallelism. In Proceedings of the
42nd ACM SIGPLAN Conference on Programming Language Design and
Implementation, PLDI ’21, New York, NY, USA, June 2021. ACM.

[43] Tao B. Schardl, William S. Moses, and Charles E. Leiserson. Tapir: Em-

bedding fork-join parallelism into llvm’s intermediate representation.

In Proceedings of the 22nd ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, PPoPP ’17, page 249–265, New York,

NY, USA, 2017. Association for Computing Machinery.

[44] Kish Shen, Vitor Santos Costa, and Andy King. Distance: A newmetric

for controlling granularity for parallel execution. Journal of Functional

and Logic Programming, 1999:1–23, 1999.
[45] Filippo Sironi, Davide B. Bartolini, Simone Campanoni, Fabio Can-

care, Henry Hoffmann, Donatella Sciuto, and Marco D. Santambrogio.

Metronome: Operating system level performance management via

self-adaptive computing. In Proceedings of the 49th Annual Design
Automation Conference, DAC ’12, pages 856–865, New York, NY, USA,

2012. ACM.

[46] Shaden Smith, Jee W. Choi, Jiajia Li, Richard Vuduc, Jongsoo Park,

Xing Liu, and George Karypis. FROSTT: The formidable repository of

open sparse tensors and tools, 2017.

[47] Alexandros Tzannes, George C. Caragea, Rajeev Barua, and Uzi

Vishkin. Lazy binary-splitting: a run-time adaptive work-stealing

scheduler. In Symposium on Principles & Practice of Parallel Program-
ming, pages 179–190, 2010.

[48] Alexandros Tzannes, George C. Caragea, Uzi Vishkin, and Rajeev

Barua. Lazy scheduling: A runtime adaptive scheduler for declarative

parallelism. ACM Trans. Program. Lang. Syst., 36(3), sep 2014.

[49] Alexandros Tzannes, George C. Caragea, Uzi Vishkin, and Rajeev

Barua. Lazy scheduling: A runtime adaptive scheduler for declarative

parallelism. TOPLAS, 36(3):10:1–10:51, September 2014.

[50] A. van Heukelum, G. T. Barkema, and R. H. Bisseling. DNA elec-

trophoresis studied with the cage model. Journal of Compututational
Physics, 180:313–326, July 2002.

[51] Joseph S. Weening. Parallel Execution of Lisp Programs. PhD thesis,

Stanford University, 1989. Computer Science Technical Report STAN-

CS-89-1265.

[52] Daniel White. 3d mandelbrot generator, 2008. https://www.
fountainware.com/Funware/Mandelbrot3D/Mandelbrot3d.htm.

[53] Chaoran Yang and John Mellor-Crummey. A practical solution to the

cactus stack problem. In Proceedings of the 28th ACM Symposium on
Parallelism in Algorithms and Architectures, pages 61–70, 2016.

[54] Yunming Zhang. Graphit github, 2018. https://github.com/GraphIt-
DSL/graphit.

[55] Yunming Zhang, Mengjiao Yang, Riyadh Baghdadi, Shoaib Kamil, Ju-

lian Shun, and Saman Amarasinghe. Graphit: A high-performance

graph dsl. Proceedings of the ACM on Programming Languages,
2(OOPSLA):1–30, 2018.

250

https://benchmark-subsetting.github.io/cNPB/
https://benchmark-subsetting.github.io/cNPB/
https://github.com/mikerainey/tpal/tree/master
https://github.com/mikerainey/tpal/tree/master
https://github.com/mikerainey/tpal/blob/master/runtime/bench/spmv.hpp#L659
https://github.com/mikerainey/tpal/blob/master/runtime/bench/spmv.hpp#L659
https://www.fountainware.com/Funware/Mandelbrot3D/Mandelbrot3d.htm
https://www.fountainware.com/Funware/Mandelbrot3D/Mandelbrot3d.htm
https://github.com/GraphIt-DSL/graphit
https://github.com/GraphIt-DSL/graphit

